Istari

Integer

The integer type is primitive but aliased in the Integer module:

integer : U 0

Integer literals are written using a z` parsing directive. For example, zero is z`0.

Plus and negation

(* +z *)
plusz : integer -> integer -> integer

(* ~z *)
negz : integer -> integer

(* -z *)
minusz : integer -> integer -> integer
       = fn x y . x +z ~z y

neq_0_1 : z`0 = z`1 : integer -> void

neq_0_neg1 : z`0 = z`-1 : integer -> void

plusz_commute : forall (a b : integer) . a +z b = b +z a : integer

plusz_assoc : forall (a b c : integer) . a +z b +z c = a +z (b +z c) : integer

plusz_id_l : forall (a : integer) . z`0 +z a = a : integer

plusz_id_r : forall (a : integer) . a +z z`0 = a : integer

plusz_inverse_l : forall (a : integer) . ~z a +z a = z`0 : integer

plusz_inverse_r : forall (a : integer) . a +z ~z a = z`0 : integer

negz_invol : forall (a : integer) . ~z (~z a) = a : integer

negz_plusz : forall (a b : integer) . ~z (a +z b) = ~z a +z ~z b : integer

plusz_cancel_l : forall (a b c : integer) . c +z a = c +z b : integer -> a = b : integer

plusz_cancel_r : forall (a b c : integer) . a +z c = b +z c : integer -> a = b : integer

plusz_shift_l : forall (a b c : integer) . a = b +z c : integer <-> ~z b +z a = c : integer

plusz_shift_r : forall (a b c : integer) . a +z b = c : integer <-> a = c +z ~z b : integer

plusz_shift_lr : forall (a b c : integer) . a +z b = c : integer <-> b = ~z a +z c : integer

plusz_shift_rl : forall (a b c : integer) . a = b +z c : integer <-> a +z ~z c = b : integer

plusz_compat : forall (a a' b b' : integer) .
                  a = a' : integer -> b = b' : integer -> a +z b = a' +z b' : integer

negz_compat : forall (a a' : integer) . a = a' : integer -> ~z a = ~z a' : integer

Inequalities

(* <z= *)
leqz : integer -> integer -> U 0

(* <z *)
ltz : integer -> integer -> U 0
    = fn x y . z`1 +z x <z= y

leqz_inhabitant : forall (a b : integer) . a <z= b -> () : a <z= b

ltz_inhabitant : forall (a b : integer) . a <z b -> () : a <z b

leqz_0_1 : z`0 <z= z`1

ltz_0_1 : z`0 <z z`1

leqz_neg1_0 : z`-1 <z z`0

ltz_neg1_0 : z`-1 <z z`0

leqz_refl : forall (a : integer) . a <z= a

leqz_refl_eq : forall (a b : integer) . a = b : integer -> a <z= b

leqz_trans : forall (a b c : integer) . a <z= b -> b <z= c -> a <z= c

leqz_antisymm : forall (a b : integer) . a <z= b -> b <z= a -> a = b : integer

This one gives transitivity in the form needed for rewriting:

leqz_implication : forall (a a' b b' : integer) . a' <z= a -> b <z= b' -> a <z= b -> a' <z= b'

ltz_impl_leqz : forall (a b : integer) . a <z b -> a <z= b

ltz_irrefl : forall (a : integer) . a <z a -> void

ltz_trans : forall (a b c : integer) . a <z b -> b <z c -> a <z c

leqz_ltz_trans : forall (a b c : integer) . a <z= b -> b <z c -> a <z c

ltz_leqz_trans : forall (a b c : integer) . a <z b -> b <z= c -> a <z c

ltz_succ : forall (a : integer) . a <z z`1 +z a

leqz_succ : forall (a : integer) . a <z= z`1 +z a

plusz_leqz : forall (a a' b b' : integer) . a <z= a' -> b <z= b' -> a +z b <z= a' +z b'

plusz_cancel_leqz_l : forall (a b c : integer) . c +z a <z= c +z b -> a <z= b

plusz_cancel_leqz_r : forall (a b c : integer) . a +z c <z= b +z c -> a <z= b

plusz_cancel_leqz_leqz_l : forall (a a' b b' : integer) .
                              a +z b <z= a' +z b' -> a' <z= a -> b <z= b'

plusz_cancel_leqz_leqz_r : forall (a a' b b' : integer) .
                              a +z b <z= a' +z b' -> b' <z= b -> a <z= a'

plusz_shift_leqz_l : forall (a b c : integer) . a <z= b +z c <-> ~z b +z a <z= c

plusz_shift_leqz_r : forall (a b c : integer) . a +z b <z= c <-> a <z= c +z ~z b

plusz_shift_leqz_lr : forall (a b c : integer) . a +z b <z= c <-> b <z= ~z a +z c

plusz_shift_leqz_rl : forall (a b c : integer) . a <z= b +z c <-> a +z ~z c <z= b

plusz_ltz_l : forall (a a' b b' : integer) . a <z a' -> b <z= b' -> a +z b <z a' +z b'

plusz_ltz_r : forall (a a' b b' : integer) . a <z= a' -> b <z b' -> a +z b <z a' +z b'

plusz_ltz : forall (a a' b b' : integer) . a <z a' -> b <z b' -> a +z b <z a' +z b'

plusz_cancel_ltz_l : forall (a b c : integer) . c +z a <z c +z b -> a <z b

plusz_cancel_ltz_r : forall (a b c : integer) . a +z c <z b +z c -> a <z b

plusz_shift_ltz_l : forall (a b c : integer) . a <z b +z c <-> ~z b +z a <z c

plusz_shift_ltz_r : forall (a b c : integer) . a +z b <z c <-> a <z c +z ~z b

plusz_shift_ltz_lr : forall (a b c : integer) . a +z b <z c <-> b <z ~z a +z c

plusz_shift_ltz_rl : forall (a b c : integer) . a <z b +z c <-> a +z ~z c <z b

negz_leqz : forall (a b : integer) . a <z= b -> ~z b <z= ~z a

negz_leqz' : forall (a b : integer) . ~z b <z= ~z a -> a <z= b

negz_ltz : forall (a b : integer) . a <z b -> ~z b <z ~z a

negz_ltz' : forall (a b : integer) . ~z b <z ~z a -> a <z b

not_leqz : forall (a b : integer) . not (a <z= b) <-> b <z a

not_ltz : forall (a b : integer) . not (a <z b) <-> b <z= a

ltz_from_leqz_neq : forall (a b : integer) . a <z= b -> not (a = b : integer) -> a <z b

ltz_as_leqz_l : forall (a b : integer) . a <z b <-> z`1 +z a <z= b

ltz_as_leqz_r : forall (a b : integer) . a <z b <-> a +z z`1 <z= b

leqz_as_ltz_l : forall (a b : integer) . a <z= b <-> a <z z`1 +z b

leqz_as_ltz_r : forall (a b : integer) . a <z= b <-> a <z b +z z`1

Effective comparisons

eqzb : integer -> integer -> bool

leqzb : integer -> integer -> bool

ltzb : integer -> integer -> bool
     = fn a b . leqzb (z`1 +z a) b

neqzb : integer -> integer -> bool
      = fn a b . Bool.notb (eqzb a b)

istrue_eqzb : forall (a b : integer) . Bool.istrue (eqzb a b) <-> a = b : integer

istrue_neqzb : forall (a b : integer) . Bool.istrue (neqzb a b) <-> a != b : integer

istrue_leqzb : forall (a b : integer) . Bool.istrue (leqzb a b) <-> a <z= b

istrue_ltzb : forall (a b : integer) . Bool.istrue (ltzb a b) <-> a <z b

notb_eqzb : forall (a b : integer) . Bool.notb (eqzb a b) = neqzb a b : bool

notb_neqzb : forall (a b : integer) . Bool.notb (neqzb a b) = eqzb a b : bool

notb_leqzb : forall (a b : integer) . Bool.notb (leqzb a b) = ltzb b a : bool

notb_ltzb : forall (a b : integer) . Bool.notb (ltzb a b) = leqzb b a : bool

Induction

We say that a is smaller than b when b < a ≤ 0 or 0 ≤ a < b:

smaller : integer -> integer -> U 0
        = fn a b . b <z a & a <z= z`0 % a <z b & z`0 <z= a

Smaller is well-founded, giving us strong induction for integers:

smaller_well_founded : forall (a : integer) . Acc integer smaller a

As a corollary, we can build an iterator for integers. It has three cases: a base case for zero, a negative case that works downwards, and a positive case that works upwards.

integer_iter : intersect (i : level) .
                  forall (P : integer -> U i) .
                    P z`0
                    -> (forall (a : integer) . a <z= z`0 -> P a -> P (z`-1 +z a))
                    -> (forall (a : integer) . z`0 <z= a -> P a -> P (z`1 +z a))
                    -> forall (a : integer) . P a
             =rec= fn P hz hm hp a .
                      if eqzb z`0 a
                      then hz
                      else (if leqzb z`0 a
                            then hp (z`-1 +z a) () (integer_iter P hz hm hp (z`-1 +z a))
                            else hm (z`1 +z a) () (integer_iter P hz hm hp (z`1 +z a)))

Relation to natural numbers

nat_to_integer : nat -> integer
               =rec= fn n . nat_case n z`0 (fn n' . z`1 +z nat_to_integer n')

nat_to_integer (zero) --> z`0
nat_to_integer (succ n) --> plusz z`1 (nat_to_integer n)

integer_to_nat : integer -> nat
               =rec= fn a . if leqzb a z`0 then 0 else succ (integer_to_nat (z`-1 +z a))

nat_to_integer_inv : forall (n : nat) . integer_to_nat (nat_to_integer n) = n : nat

integer_to_nat_inv : forall (a : integer) .
                        z`0 <z= a -> nat_to_integer (integer_to_nat a) = a : integer

nat_to_integer_nonneg : forall (n : nat) . z`0 <z= nat_to_integer n

nat_to_integer_mono : forall (m n : nat) . m <= n -> nat_to_integer m <z= nat_to_integer n

nat_to_integer_mono_lt : forall (m n : nat) . m < n -> nat_to_integer m <z nat_to_integer n

plus_to_integer : forall (m n : nat) .
                     nat_to_integer (m + n) = nat_to_integer m +z nat_to_integer n : integer

integer_to_nat_succ : forall (a : integer) .
                         z`0 <z= a -> integer_to_nat (z`1 +z a) = succ (integer_to_nat a) : nat

integer_to_nat_mono : forall (a b : integer) . a <z= b -> integer_to_nat a <= integer_to_nat b

integer_to_nat_mono_lt : forall (a b : integer) .
                            z`0 <z= a -> a <z b -> integer_to_nat a < integer_to_nat b

plusz_to_nat : forall (a b : integer) .
                  z`0 <z= a
                  -> z`0 <z= b
                  -> integer_to_nat (a +z b) = integer_to_nat a + integer_to_nat b : nat

pred_to_integer : forall (n : nat) .
                     0 < n -> nat_to_integer (Nat.pred n) = z`-1 +z nat_to_integer n : integer

minus_to_integer : forall (m n : nat) .
                      n <= m
                      -> nat_to_integer (m - n)
                           = nat_to_integer m -z nat_to_integer n
                           : integer

minusz_to_nat : forall (a b : integer) .
                   z`0 <z= b
                   -> b <z= a
                   -> integer_to_nat (a -z b) = integer_to_nat a - integer_to_nat b : nat

Decidability

eq_integer_decide : forall (a b : integer) . Decidable.decidable (a = b : integer)

neq_integer_decide : forall (a b : integer) . Decidable.decidable (a != b : integer)

leqz_decide : forall (a b : integer) . Decidable.decidable (a <z= b)

ltz_decide : forall (a b : integer) . Decidable.decidable (a <z b)

eq_integer_stable : forall (a b : integer) . Stable.stable (a = b : integer)

neq_integer_stable : forall (a b : integer) . Stable.stable (a != b : integer)

leqz_stable : forall (a b : integer) . Stable.stable (a <z= b)

ltz_stable : forall (a b : integer) . Stable.stable (a <z b)

leqz_iff_ltz_or_eq : forall (a b : integer) . a <z= b <-> a <z b % a = b : integer

integer_trichotomy : forall (a b : integer) . a <z b % a = b : integer % b <z a

integer_dichotomy : forall (a b : integer) . a <z= b % b <z a

integer_dichotomy_weak : forall (a b : integer) . a <z= b % b <z= a

integer_dichotomy_neq : forall (a b : integer) . a != b : integer -> a <z b % b <z a

Multiplication

(* *z *)
timesz : integer -> integer -> integer

timesz_id_l : forall (a : integer) . z`1 *z a = a : integer

timesz_id_r : forall (a : integer) . a *z z`1 = a : integer

timesz_ann_l : forall (a : integer) . z`0 *z a = z`0 : integer

timesz_ann_r : forall (a : integer) . a *z z`0 = z`0 : integer

timesz_commute : forall (a b : integer) . a *z b = b *z a : integer

timesz_assoc : forall (a b c : integer) . a *z b *z c = a *z (b *z c) : integer

timesz_dist_plusz_l : forall (a b c : integer) . (a +z b) *z c = a *z c +z b *z c : integer

timesz_dist_plusz_r : forall (a b c : integer) . a *z (b +z c) = a *z b +z a *z c : integer

negz_dist_timesz_l : forall (a b : integer) . ~z (a *z b) = ~z a *z b : integer

negz_dist_timesz_r : forall (a b : integer) . ~z (a *z b) = a *z ~z b : integer

negz_as_timesz : forall (a : integer) . ~z a = z`-1 *z a : integer

timesz_compat : forall (a a' b b' : integer) .
                   a = a' : integer -> b = b' : integer -> a *z b = a' *z b' : integer

timesz_leqz : forall (a a' b b' : integer) .
                 z`0 <z= a -> z`0 <z= b -> a <z= a' -> b <z= b' -> a *z b <z= a' *z b'

(* an alias for timesz_leqz *)
timesz_leqz_pos_pos : forall (a a' b b' : integer) .
                         z`0 <z= a -> z`0 <z= b -> a <z= a' -> b <z= b' -> a *z b <z= a' *z b'

timesz_leqz_neg_neg : forall (a a' b b' : integer) .
                         a' <z= z`0
                         -> b' <z= z`0
                         -> a <z= a'
                         -> b <z= b'
                         -> a' *z b' <z= a *z b

timesz_leqz_pos_neg : forall (a a' b b' : integer) .
                         z`0 <z= a -> b' <z= z`0 -> a <z= a' -> b <z= b' -> a' *z b <z= a *z b'

timesz_leqz_neg_pos : forall (a a' b b' : integer) .
                         a' <z= z`0 -> z`0 <z= b -> a <z= a' -> b <z= b' -> a *z b' <z= a' *z b

timesz_leqz_l : forall (a b b' : integer) . z`0 <z= a -> b <z= b' -> a *z b <z= a *z b'

timesz_leqz_r : forall (a a' b : integer) . z`0 <z= b -> a <z= a' -> a *z b <z= a' *z b

timesz_leqz_l_neg : forall (a b b' : integer) . a <z= z`0 -> b <z= b' -> a *z b' <z= a *z b

timesz_leqz_r_neg : forall (a a' b : integer) . b <z= z`0 -> a <z= a' -> a' *z b <z= a *z b

timesz_ltz_zero : forall (a b : integer) . z`0 <z a -> z`0 <z b -> z`0 <z a *z b

(* an alias for timesz_ltz_zero *)
timesz_ltz_zero_pos_pos : forall (a b : integer) . z`0 <z a -> z`0 <z b -> z`0 <z a *z b

timesz_ltz_zero_pos_neg : forall (a b : integer) . z`0 <z a -> b <z z`0 -> a *z b <z z`0

timesz_ltz_zero_neg_pos : forall (a b : integer) . a <z z`0 -> z`0 <z b -> a *z b <z z`0

timesz_ltz_zero_neg_neg : forall (a b : integer) . a <z z`0 -> b <z z`0 -> z`0 <z a *z b

integer_integral_domain : forall (a b : integer) .
                             a *z b = z`0 : integer -> a = z`0 : integer % b = z`0 : integer

timesz_ltz_zero_invert : forall (a b : integer) .
                            z`0 <z a *z b -> a <z z`0 & b <z z`0 % z`0 <z a & z`0 <z b

times_to_integer : forall (m n : nat) .
                      nat_to_integer (m * n) = nat_to_integer m *z nat_to_integer n : integer

timesz_ltz_l : forall (a b b' : integer) . z`0 <z a -> b <z b' -> a *z b <z a *z b'

timesz_ltz_r : forall (a a' b : integer) . z`0 <z b -> a <z a' -> a *z b <z a' *z b

timesz_cancel_leqz_l : forall (a b c : integer) . z`0 <z c -> c *z a <z= c *z b -> a <z= b

timesz_cancel_leqz_r : forall (a b c : integer) . z`0 <z c -> a *z c <z= b *z c -> a <z= b

timesz_cancel_leqz_l_remainder : forall (a b c r : integer) .
                                    z`0 <z c -> r <z c -> c *z a <z= c *z b +z r -> a <z= b

timesz_cancel_leqz_r_remainder : forall (a b c r : integer) .
                                    z`0 <z c -> r <z c -> a *z c <z= b *z c +z r -> a <z= b

Minimum/Maximum

minz : integer -> integer -> integer
     = fn a b . if leqzb a b then a else b

maxz : integer -> integer -> integer
     = fn a b . if leqzb a b then b else a

negz_minz : forall (a b : integer) . ~z (minz a b) = maxz (~z a) (~z b) : integer

negz_maxz : forall (a b : integer) . ~z (maxz a b) = minz (~z a) (~z b) : integer

maxz_as_minz : forall (a b : integer) . maxz a b = ~z (minz (~z a) (~z b)) : integer

minz_as_maxz : forall (a b : integer) . minz a b = ~z (maxz (~z a) (~z b)) : integer

minz_commute : forall (a b : integer) . minz a b = minz b a : integer

maxz_commute : forall (a b : integer) . maxz a b = maxz b a : integer

minz_assoc : forall (a b c : integer) . minz (minz a b) c = minz a (minz b c) : integer

maxz_assoc : forall (a b c : integer) . maxz (maxz a b) c = maxz a (maxz b c) : integer

minz_leq_l : forall (a b : integer) . minz a b <z= a

minz_leq_r : forall (a b : integer) . minz a b <z= b

maxz_leq_l : forall (a b : integer) . a <z= maxz a b

maxz_leq_r : forall (a b : integer) . b <z= maxz a b

minz_glb : forall (a b c : integer) . c <z= a -> c <z= b -> c <z= minz a b

maxz_lub : forall (a b c : integer) . a <z= c -> b <z= c -> maxz a b <z= c

minz_eq_l : forall (a b : integer) . a <z= b -> minz a b = a : integer

minz_eq_r : forall (a b : integer) . b <z= a -> minz a b = b : integer

maxz_eq_l : forall (a b : integer) . b <z= a -> maxz a b = a : integer

maxz_eq_r : forall (a b : integer) . a <z= b -> maxz a b = b : integer

minz_idem : forall (a : integer) . minz a a = a : integer

maxz_idem : forall (a : integer) . maxz a a = a : integer

minz_dist_maxz_l : forall (a b c : integer) .
                      minz (maxz a b) c = maxz (minz a c) (minz b c) : integer

minz_dist_maxz_r : forall (a b c : integer) .
                      minz a (maxz b c) = maxz (minz a b) (minz a c) : integer

maxz_dist_minz_l : forall (a b c : integer) .
                      maxz (minz a b) c = minz (maxz a c) (maxz b c) : integer

maxz_dist_minz_r : forall (a b c : integer) .
                      maxz a (minz b c) = minz (maxz a b) (maxz a c) : integer

plusz_dist_minz_l : forall (a b c : integer) .
                       minz a b +z c = minz (a +z c) (b +z c) : integer

plusz_dist_minz_r : forall (a b c : integer) .
                       a +z minz b c = minz (a +z b) (a +z c) : integer

plusz_dist_maxz_l : forall (a b c : integer) .
                       maxz a b +z c = maxz (a +z c) (b +z c) : integer

plusz_dist_maxz_r : forall (a b c : integer) .
                       a +z maxz b c = maxz (a +z b) (a +z c) : integer

min_to_integer : forall (m n : nat) .
                    nat_to_integer (Nat.min m n)
                      = minz (nat_to_integer m) (nat_to_integer n)
                      : integer

max_to_integer : forall (m n : nat) .
                    nat_to_integer (Nat.max m n)
                      = maxz (nat_to_integer m) (nat_to_integer n)
                      : integer

minz_to_nat : forall (a b : integer) .
                 integer_to_nat (minz a b)
                   = Nat.min (integer_to_nat a) (integer_to_nat b)
                   : nat

maxz_to_nat : forall (a b : integer) .
                 integer_to_nat (maxz a b)
                   = Nat.max (integer_to_nat a) (integer_to_nat b)
                   : nat