List
Lists are defined:
datatype
intersect (i : level) .
intermediate (a : U i) .
U i
of
list : type =
| nil : list
| cons : a -> list -> list
Producing:
list : intersect (i : level) . forall (a : U i) . U i
nil : intersect (i : level) (a : U i) . list a
cons : intersect (i : level) (a : U i) . a -> list a -> list a
The iterator for lists:
list_iter : intersect (i : level) .
forall (a : U i) (P : list a -> U i) .
P nil
-> (forall (v0 : a) (v1 : list a) . P v1 -> P (v0 :: v1))
-> forall (v0 : list a) . P v0
list_iter a P z s (nil) --> z
list_iter a P z s (cons h t) --> s h t (list_iter a P z s t)
A simpler case-analysis operation:
list_case : intersect (i : level) .
forall (a b : U i) . list a -> b -> (a -> list a -> b) -> b
= fn a b l mnil mcons . (fnind list_fn : forall (v0 : list [a]) . b of
| nil . mnil
| cons h t . mcons h t) l
(2 implicit arguments)
list_case _ _ (nil) z _ --> z
list_case _ _ (cons h t) _ s --> s h t
Lists are covariant:
list_subtype : forall (i : level) (a b : U i) . a <: b -> list a <: list b
append : intersect (i : level) . forall (a : U i) . list a -> list a -> list a
= fn a l1 l2 . (fnind list_fn : forall (v0 : list [a]) . list a of
| nil . l2
| cons h v0 . h :: list_fn v0) l1
(1 implicit argument)
append _ (nil) l --> l
append a (cons h t) l --> cons h (append a t l)
append_id_l : forall (i : level) (a : U i) (l : list a) . append nil l = l : list a
append_id_r : forall (i : level) (a : U i) (l : list a) . append l nil = l : list a
append_assoc : forall (i : level) (a : U i) (l1 l2 l3 : list a) .
append (append l1 l2) l3 = append l1 (append l2 l3) : list a
append_cons_assoc : forall (i : level) (a : U i) (x : a) (l1 l2 : list a) .
append (x :: l1) l2 = x :: append l1 l2 : list a
append_eq_nil : forall (i : level) (a : U i) (l1 l2 : list a) .
nil = append l1 l2 : list a -> l1 = nil : list a & l2 = nil : list a
append_eq_cons : forall (i : level) (a : U i) (h : a) (t l1 l2 : list a) .
h :: t = append l1 l2 : list a
-> (exists (l1' : list a) .
l1 = h :: l1' : list a & t = append l1' l2 : list a)
% l1 = nil : list a & l2 = h :: t : list a
length : intersect (i : level) . forall (a : U i) . list a -> nat
=rec= fn a l . list_case l 0 (fn v0 t . succ (length t))
(1 implicit argument)
length _ (nil) --> 0
length a (cons t) --> succ (length a t)
length_append : forall (i : level) (a : U i) (l1 l2 : list a) .
length (append l1 l2) = length l1 + length l2 : nat
length_zero_form : forall (i : level) (a : U i) (l : list a) .
length l = 0 : nat -> l = nil : list a
length_succ_form : forall (i : level) (a : U i) (l : list a) (n : nat) .
length l = succ n : nat
-> exists (h : a) (t : list a) . l = h :: t : list a
length_nonzero_form : forall (i : level) (a : U i) (l : list a) .
0 < length l -> exists (h : a) (t : list a) . l = h :: t : list a
length_leq_form : forall (i : level) (a : U i) (l : list a) (n : nat) .
n <= length l
-> exists (l1 l2 : list a) .
l = append l1 l2 : list a & n = length l1 : nat
foldr : intersect (i : level) . forall (a b : U i) . b -> (a -> b -> b) -> list a -> b
(2 implicit arguments)
foldr _ _ z _ (nil) --> z
foldr a b z f (cons h t) --> f h (foldr a b z f t)
foldl : intersect (i : level) . forall (a b : U i) . b -> (a -> b -> b) -> list a -> b
(2 implicit arguments)
foldl _ _ z _ (nil) --> z
foldl a b z f (cons h t) --> foldl a b (f h z) f t
foldr_append : forall (i : level) (a b : U i) (z : b) (f : a -> b -> b) (l1 l2 : list a) .
foldr z f (append l1 l2) = foldr (foldr z f l2) f l1 : b
foldl_append : forall (i : level) (a b : U i) (z : b) (f : a -> b -> b) (l1 l2 : list a) .
foldl z f (append l1 l2) = foldl (foldl z f l1) f l2 : b
map : intersect (i : level) . forall (a b : U i) . (a -> b) -> list a -> list b
(2 implicit arguments)
map _ b _ (nil) --> nil
map a b f (cons h t) --> cons (f h) (map a b f t)
map_compose : forall (i : level) (a b c : U i) (f : b -> c) (g : a -> b) (l : list a) .
map f (map g l) = map (fn x . f (g x)) l : list c
map_append : forall (i : level) (a b : U i) (f : a -> b) (l1 l2 : list a) .
map f (append l1 l2) = append (map f l1) (map f l2) : list b
map_as_foldr : forall (i : level) (a b : U i) (f : a -> b) (l : list a) .
map f l = foldr nil (fn h t . f h :: t) l : list b
length_map : forall (i : level) (a b : U i) (f : a -> b) (l : list a) .
length (map f l) = length l : nat
foldr_map : forall
(i : level)
(a b c : U i)
(z : c)
(f : b -> c -> c)
(g : a -> b)
(l : list a) .
foldr z f (map g l) = foldr z (fn h t . f (g h) t) l : c
foldl_map : forall
(i : level)
(a b c : U i)
(z : c)
(f : b -> c -> c)
(g : a -> b)
(l : list a) .
foldl z f (map g l) = foldl z (fn h t . f (g h) t) l : c
reverse : intersect (i : level) . forall (a : U i) . list a -> list a
(1 implicit argument)
reverse a (nil) --> nil
reverse a (cons h t) --> append a (reverse a t) (cons h nil)
reverse_as_foldl : forall (i : level) (a : U i) (l : list a) .
reverse l = foldl nil (fn h t . h :: t) l : list a
reverse_append : forall (i : level) (a : U i) (l1 l2 : list a) .
reverse (append l1 l2) = append (reverse l2) (reverse l1) : list a
reverse_invol : forall (i : level) (a : U i) (l : list a) . reverse (reverse l) = l : list a
length_reverse : forall (i : level) (a : U i) (l : list a) .
length (reverse l) = length l : nat
foldl_as_foldr : forall (i : level) (a b : U i) (z : b) (f : a -> b -> b) (l : list a) .
foldl z f l = foldr z f (reverse l) : b
foldr_as_foldl : forall (i : level) (a b : U i) (z : b) (f : a -> b -> b) (l : list a) .
foldr z f l = foldl z f (reverse l) : b
reverse_map : forall (i : level) (a b : U i) (f : a -> b) (l : list a) .
reverse (map f l) = map f (reverse l) : list b
datatype
intersect (i : level) .
forall (a : U i) (P : a -> U i) .
U i
of
Forall : list a -> type =
| Forall_nil : Forall nil
| Forall_cons : forall h t . P h -> Forall t -> Forall (h :: t)
datatype
intersect (i : level) .
forall (a : U i) (P : a -> U i) .
U i
of
Exists : list a -> type =
| Exists_hit : forall h t . P h -> Exists (h :: t)
| Exists_miss : forall h t . Exists t -> Exists (h :: t)
(The first argument, a
, is implicit in Forall
, Exists
, and their
constructors.)
Forall_as_foldr : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
Forall P l <-> foldr unit (fn h Q . P h & Q) l
Exists_as_foldr : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
Exists P l <-> foldr void (fn h Q . P h % Q) l
In : intersect (i : level) . forall (a : U i) . a -> list a -> U i
In _ _ (nil) --> void
In a x (cons h t) --> x = h : a % In a x t
In_as_exists : forall (i : level) (a : U i) (x : a) (l : list a) .
In a x l <-> Exists (fn y . x = y : a) l
Forall_forall : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
Forall P l <-> (forall (x : a) . In a x l -> P x)
Exists_exists : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
Exists P l <-> (exists (x : a) . In a x l & P x)
Forall_nil_iff : forall (i : level) (a : U i) (P : a -> U i) . Forall P nil <-> unit
Exists_nil_iff : forall (i : level) (a : U i) (P : a -> U i) . Exists P nil <-> void
Forall_cons_iff : forall (i : level) (a : U i) (P : a -> U i) (x : a) (l : list a) .
Forall P (x :: l) <-> P x & Forall P l
Exists_cons_iff : forall (i : level) (a : U i) (P : a -> U i) (x : a) (l : list a) .
Exists P (x :: l) <-> P x % Exists P l
Forall_append : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
Forall P l1 -> Forall P l2 -> Forall P (append l1 l2)
Exists_append_1 : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
Exists P l1 -> Exists P (append l1 l2)
Exists_append_2 : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
Exists P l2 -> Exists P (append l1 l2)
Forall_append_iff : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
Forall P (append l1 l2) <-> Forall P l1 & Forall P l2
Exists_append_iff : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
Exists P (append l1 l2) <-> Exists P l1 % Exists P l2
In_append : forall (i : level) (a : U i) (x : a) (l1 l2 : list a) .
In a x (append l1 l2) <-> In a x l1 % In a x l2
Forall_implies : forall (i : level) (a : U i) (P Q : a -> U i) (l : list a) .
(forall (x : a) . P x -> Q x) -> Forall P l -> Forall Q l
Exists_implies : forall (i : level) (a : U i) (P Q : a -> U i) (l : list a) .
(forall (x : a) . P x -> Q x) -> Exists P l -> Exists Q l
Forall_map : forall (i : level) (a b : U i) (P : b -> U i) (f : a -> b) (l : list a) .
Forall P (map f l) <-> Forall (fn x . P (f x)) l
Exists_map : forall (i : level) (a b : U i) (P : b -> U i) (f : a -> b) (l : list a) .
Exists P (map f l) <-> Exists (fn x . P (f x)) l
In_map : forall (i : level) (a b : U i) (f : a -> b) (x : b) (l : list a) .
In b x (map f l) <-> (exists (y : a) . In a y l & x = f y : b)
Forall_reverse : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
Forall P (reverse l) <-> Forall P l
Exists_reverse : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
Exists P (reverse l) <-> Exists P l
In_reverse : forall (i : level) (a : U i) (x : a) (l : list a) .
In a x (reverse l) <-> In a x l
decidable_Forall_dep : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
(forall (x : a) . In a x l -> Decidable.decidable (P x))
-> Decidable.decidable (Forall P l)
decidable_Forall : forall (i : level) (a : U i) (P : a -> U i) .
(forall (x : a) . Decidable.decidable (P x))
-> forall (l : list a) . Decidable.decidable (Forall P l)
decidable_Exists_dep : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
(forall (x : a) . In a x l -> Decidable.decidable (P x))
-> Decidable.decidable (Exists P l)
decidable_Exists : forall (i : level) (a : U i) (P : a -> U i) .
(forall (x : a) . Decidable.decidable (P x))
-> forall (l : list a) . Decidable.decidable (Exists P l)
decidable_In : forall (i : level) (a : U i) .
(forall (x y : a) . Decidable.decidable (x = y : a))
-> forall (x : a) (l : list a) . Decidable.decidable (In a x l)
nth : intersect (lv : level) . forall (a : U lv) . list a -> nat -> Option.option a
(1 implicit argument)
nth a (nil) _ --> None
nth a (cons h t) i --> nat_case i (Some h) (fn i' . nth a t i')
nth_within_length : forall (lv : level) (a : U lv) (l : list a) (i : nat) .
i < length l
<-> (exists (x : a) . nth l i = Option.Some x : Option.option a)
nth_outside_length : forall (lv : level) (a : U lv) (l : list a) (i : nat) .
length l <= i <-> nth l i = Option.None : Option.option a
nth_append_left : forall (lv : level) (a : U lv) (l1 l2 : list a) (i : nat) .
i < length l1 -> nth (append l1 l2) i = nth l1 i : Option.option a
nth_append_right : forall (lv : level) (a : U lv) (l1 l2 : list a) (i : nat) .
length l1 <= i
-> nth (append l1 l2) i = nth l2 (i - length l1) : Option.option a
nth_map : forall (lv : level) (a b : U lv) (f : a -> b) (l : list a) (i : nat) .
nth (map f l) i = Option.map f (nth l i) : Option.option b
nth_In : forall (lv : level) (a : U lv) (l : list a) (i : nat) .
Option.option_case (nth l i) unit (fn x . In a x l)
list_eq_by_nth : forall (i : level) (a : U i) (l l' : list a) .
length l = length l' : nat
-> (forall (j : nat) . j < length l -> nth l j = nth l' j : Option.option a)
-> l = l' : list a
zip : intersect (i : level) . forall (a b : U i) . list a -> list b -> list (a & b)
(2 implicit arguments)
zip a b (nil) _ --> nil
zip a b (cons h1 t1) l2 --> list_case b (list (a & b))
l2
nil
(fn h2 t2 . cons (h1 , h2) (zip a b t1 t2))
unzip : intersect (i : level) . forall (a b : U i) . list (a & b) -> list a & list b
(2 implicit arguments)
unzip a b (nil) --> (nil , nil)
unzip a b (cons h t) --> (cons (h #1) (unzip a b t #1) , cons (h #2) (unzip a b t #2))
zip_unzip : forall (i : level) (a b : U i) (l : list (a & b)) .
zip (unzip l #1) (unzip l #2) = l : list (a & b)
unzip_zip : forall (i : level) (a b : U i) (l1 : list a) (l2 : list b) .
length l1 = length l2 : nat -> unzip (zip l1 l2) = (l1, l2) : (list a & list b)
append_zip : forall (i : level) (a b : U i) (l1 l1' : list a) (l2 l2' : list b) .
length l1 = length l2 : nat
-> append (zip l1 l2) (zip l1' l2')
= zip (append l1 l1') (append l2 l2')
: list (a & b)
append_unzip : forall (i : level) (a b : U i) (l l' : list (a & b)) .
append (unzip l #1) (unzip l' #1) = unzip (append l l') #1 : list a
& append (unzip l #2) (unzip l' #2) = unzip (append l l') #2 : list b
length_zip : forall (i : level) (a b : U i) (l1 : list a) (l2 : list b) .
length (zip l1 l2) = Nat.min (length l1) (length l2) : nat
length_unzip : forall (i : level) (a b : U i) (l : list (a & b)) .
length (unzip l #1) = length l : nat & length (unzip l #2) = length l : nat
reverse_zip : forall (i : level) (a b : U i) (l1 : list a) (l2 : list b) .
length l1 = length l2 : nat
-> reverse (zip l1 l2) = zip (reverse l1) (reverse l2) : list (a & b)
reverse_unzip : forall (i : level) (a b : U i) (l : list (a & b)) .
reverse (unzip l #1) = unzip (reverse l) #1 : list a
& reverse (unzip l #2) = unzip (reverse l) #2 : list b
nth_zip : forall (lv : level) (a b : U lv) (l1 : list a) (l2 : list b) (i : nat) .
nth (zip l1 l2) i
= Option.bind
(nth l1 i)
(fn x . Option.bind (nth l2 i) (fn y . Option.Some (x, y)))
: Option.option (a & b)
nth_unzip : forall (lv : level) (a b : U lv) (l : list (a & b)) (i : nat) .
nth (unzip l #1) i = Option.map (fn x . x #1) (nth l i) : Option.option a
& nth (unzip l #2) i = Option.map (fn x . x #2) (nth l i) : Option.option b
keep : intersect (i : level) . forall (a : U i) . nat -> list a -> list a
(1 implicit argument)
Keeping too many elements is permitted, and results in the full list.
keep _ zero _ --> nil
keep _ (succ _) nil --> nil
keep a (succ n) (cons h t) --> cons h (keep a n t)
keep_nil : forall (i : level) (a : U i) (n : nat) . keep n nil = nil : list a
length_keep_min : forall (i : level) (a : U i) (n : nat) (l : list a) .
length (keep n l) = Nat.min n (length l) : nat
length_keep_leq : forall (i : level) (a : U i) (n : nat) (l : list a) . length (keep n l) <= n
length_keep : forall (i : level) (a : U i) (n : nat) (l : list a) .
n <= length l -> length (keep n l) = n : nat
keep_idem : forall (i : level) (a : U i) (n : nat) (l : list a) .
keep n (keep n l) = keep n l : list a
keep_append_leq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
n <= length l1 -> keep n (append l1 l2) = keep n l1 : list a
keep_append_geq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
length l1 <= n
-> keep n (append l1 l2) = append l1 (keep (n - length l1) l2) : list a
keep_append_eq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
n = length l1 : nat -> keep n (append l1 l2) = l1 : list a
keep_all : forall (i : level) (a : U i) (l : list a) . keep (length l) l = l : list a
keep_map : forall (i : level) (a b : U i) (n : nat) (f : a -> b) (l : list a) .
keep n (map f l) = map f (keep n l) : list b
Forall_keep_weaken : forall (i : level) (a : U i) (P : a -> U i) (n : nat) (l : list a) .
Forall P l -> Forall P (keep n l)
Exists_keep_weaken : forall (i : level) (a : U i) (P : a -> U i) (n : nat) (l : list a) .
Exists P (keep n l) -> Exists P l
In_keep_weaken : forall (i : level) (a : U i) (x : a) (n : nat) (l : list a) .
In a x (keep n l) -> In a x l
nth_keep : forall (i : level) (a : U i) (m n : nat) (l : list a) .
n < m -> nth (keep m l) n = nth l n : Option.option a
drop : intersect (i : level) . forall (a : U i) . nat -> list a -> list a
(1 implicit argument)
Dropping too many elements is permitted, and results in the empty list.
drop _ zero l --> l
drop _ (succ _) nil --> nil
drop _ (succ n) (cons h t) --> drop n t
drop_nil : forall (i : level) (a : U i) (n : nat) . drop n nil = nil : list a
length_drop : forall (i : level) (a : U i) (n : nat) (l : list a) .
length (drop n l) = length l - n : nat
drop_plus : forall (i : level) (a : U i) (l : list a) (m n : nat) .
drop n (drop m l) = drop (m + n) l : list a
drop_append_leq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
n <= length l1 -> drop n (append l1 l2) = append (drop n l1) l2 : list a
drop_append_geq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
length l1 <= n -> drop n (append l1 l2) = drop (n - length l1) l2 : list a
drop_append_eq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
n = length l1 : nat -> drop n (append l1 l2) = l2 : list a
drop_all : forall (i : level) (a : U i) (l : list a) . drop (length l) l = nil : list a
drop_map : forall (i : level) (a b : U i) (n : nat) (f : a -> b) (l : list a) .
drop n (map f l) = map f (drop n l) : list b
Forall_drop_weaken : forall (i : level) (a : U i) (P : a -> U i) (n : nat) (l : list a) .
Forall P l -> Forall P (drop n l)
Exists_drop_weaken : forall (i : level) (a : U i) (P : a -> U i) (n : nat) (l : list a) .
Exists P (drop n l) -> Exists P l
In_drop_weaken : forall (i : level) (a : U i) (x : a) (n : nat) (l : list a) .
In a x (drop n l) -> In a x l
nth_drop : forall (i : level) (a : U i) (m n : nat) (l : list a) .
nth (drop m l) n = nth l (m + n) : Option.option a
nth_as_drop : forall (i : level) (a : U i) (l : list a) (n : nat) .
nth l n
= list_case (drop n l) Option.None (fn h v0 . Option.Some h)
: Option.option a
split_list : forall (i : level) (a : U i) (n : nat) (l : list a) .
l = append (keep n l) (drop n l) : list a
map_flat : intersect (i : level) . forall (a b : U i) . (a -> list b) -> list a -> list b
(2 implicit arguments)
map_flat _ b _ (nil) --> nil
map_flat a b f (cons h t) --> append b (f h) (map_flat a b f t)
In_map_flat : forall (i : level) (a b : U i) (f : a -> list b) (x : b) (l : list a) .
In b x (map_flat f l) <-> (exists (y : a) . In a y l & In b x (f y))
map_flat_as_foldr : forall (i : level) (a b : U i) (f : a -> list b) (l : list a) .
map_flat f l = foldr nil (fn h t . append (f h) t) l : list b
datatype
intersect (i : level) .
forall (a : U i) (P : a -> a -> U i) .
U i
of
Forall_dist : list a -> type =
| Forall_dist_nil :
Forall_dist nil
| Forall_dist_cons :
forall h t .
Forall (P h) t
-> Forall_dist t
-> Forall_dist (cons h t)
(The first argument, a
, is implicit in Forall_dist
and its
constructors)
Forall_dist_nil_iff : forall (i : level) (a : U i) (P : a -> a -> U i) .
Forall_dist P nil <-> unit
Forall_dist_cons_iff : forall (i : level) (a : U i) (P : a -> a -> U i) (x : a) (l : list a) .
Forall_dist P (x :: l) <-> Forall (P x) l & Forall_dist P l
Forall_dist_append : forall (i : level) (a : U i) (P : a -> a -> U i) (l1 l2 : list a) .
Forall (fn x . Forall (P x) l2) l1
-> Forall_dist P l1
-> Forall_dist P l2
-> Forall_dist P (append l1 l2)
Forall_dist_append_iff : forall (i : level) (a : U i) (P : a -> a -> U i) (l1 l2 : list a) .
Forall_dist P (append l1 l2)
<-> Forall (fn x . Forall (P x) l2) l1
& Forall_dist P l1
& Forall_dist P l2
Forall_dist_implies : forall (i : level) (a : U i) (P Q : a -> a -> U i) (l : list a) .
(forall (x y : a) . P x y -> Q x y)
-> Forall_dist P l
-> Forall_dist Q l
Forall_dist_map : forall
(i : level)
(a b : U i)
(P : b -> b -> U i)
(f : a -> b)
(l : list a) .
Forall_dist P (map f l) <-> Forall_dist (fn x y . P (f x) (f y)) l
Forall_dist_reverse : forall (i : level) (a : U i) (P : a -> a -> U i) (l : list a) .
(forall (x y : a) . P x y -> P y x)
-> Forall_dist P (reverse l) <-> Forall_dist P l
decidable_Forall_dist_dep : forall (i : level) (a : U i) (P : a -> a -> U i) (l : list a) .
(forall (x y : a) .
In a x l -> In a y l -> Decidable.decidable (P x y))
-> Decidable.decidable (Forall_dist P l)
decidable_Forall_dist : forall (i : level) (a : U i) (P : a -> a -> U i) (l : list a) .
(forall (x y : a) . Decidable.decidable (P x y))
-> Decidable.decidable (Forall_dist P l)
list_subtype : forall (i : level) (a b : U i) . a <: b -> list a <: list b
Note that this fact relies on nil
and cons
’s type argument being
invisible (i.e., taken using intersect
).