Istari

List

Lists are defined:

datatype
  intersect (i : level) .
  intermediate (a : U i) .
  U i
of
  list : type =
  | nil : list
  | cons : a -> list -> list

Producing:

list : intersect (i : level) . forall (a : U i) . U i

nil  : intersect (i : level) (a : U i) . list a

cons : intersect (i : level) (a : U i) . a -> list a -> list a

The iterator for lists:

list_iter : intersect (i : level) .
               forall (a : U i) (P : list a -> U i) .
                 P nil
                 -> (forall (v0 : a) (v1 : list a) . P v1 -> P (v0 :: v1))
                 -> forall (v0 : list a) . P v0

list_iter a P z s (nil) --> z
list_iter a P z s (cons h t) --> s h t (list_iter a P z s t)

A simpler case-analysis operation:

list_case : intersect (i : level) .
               forall (a b : U i) . list a -> b -> (a -> list a -> b) -> b
          = fn a b l mnil mcons . (fnind list_fn : forall (v0 : list [a]) . b of
                                    | nil . mnil
                                    | cons h t . mcons h t) l
          (2 implicit arguments)

list_case _ _ (nil) z _ --> z
list_case _ _ (cons h t) _ s --> s h t

Lists are covariant:

list_subtype : forall (i : level) (a b : U i) . a <: b -> list a <: list b

Append

append : intersect (i : level) . forall (a : U i) . list a -> list a -> list a
       = fn a l1 l2 . (fnind list_fn : forall (v0 : list [a]) . list a of
                        | nil . l2
                        | cons h v0 . h :: list_fn v0) l1
       (1 implicit argument)

append _ (nil) l --> l
append a (cons h t) l --> cons h (append a t l)

append_id_l : forall (i : level) (a : U i) (l : list a) . append nil l = l : list a

append_id_r : forall (i : level) (a : U i) (l : list a) . append l nil = l : list a

append_assoc : forall (i : level) (a : U i) (l1 l2 l3 : list a) .
                  append (append l1 l2) l3 = append l1 (append l2 l3) : list a

append_cons_assoc : forall (i : level) (a : U i) (x : a) (l1 l2 : list a) .
                       append (x :: l1) l2 = x :: append l1 l2 : list a

append_eq_nil : forall (i : level) (a : U i) (l1 l2 : list a) .
                   nil = append l1 l2 : list a -> l1 = nil : list a & l2 = nil : list a

append_eq_cons : forall (i : level) (a : U i) (h : a) (t l1 l2 : list a) .
                    h :: t = append l1 l2 : list a
                    -> (exists (l1' : list a) .
                          l1 = h :: l1' : list a & t = append l1' l2 : list a)
                       % l1 = nil : list a & l2 = h :: t : list a

Length

length : intersect (i : level) . forall (a : U i) . list a -> nat
       =rec= fn a l . list_case l 0 (fn v0 t . succ (length t))
       (1 implicit argument)

length _ (nil) --> 0
length a (cons t) --> succ (length a t)

length_append : forall (i : level) (a : U i) (l1 l2 : list a) .
                   length (append l1 l2) = length l1 + length l2 : nat

length_zero_form : forall (i : level) (a : U i) (l : list a) .
                      length l = 0 : nat -> l = nil : list a

length_succ_form : forall (i : level) (a : U i) (l : list a) (n : nat) .
                      length l = succ n : nat
                      -> exists (h : a) (t : list a) . l = h :: t : list a

length_nonzero_form : forall (i : level) (a : U i) (l : list a) .
                         0 < length l -> exists (h : a) (t : list a) . l = h :: t : list a

length_leq_form : forall (i : level) (a : U i) (l : list a) (n : nat) .
                     n <= length l
                     -> exists (l1 l2 : list a) .
                          l = append l1 l2 : list a & n = length l1 : nat

Fold

foldr : intersect (i : level) . forall (a b : U i) . b -> (a -> b -> b) -> list a -> b
      (2 implicit arguments)
foldr _ _ z _ (nil) --> z
foldr a b z f (cons h t) --> f h (foldr a b z f t)

foldl : intersect (i : level) . forall (a b : U i) . b -> (a -> b -> b) -> list a -> b
      (2 implicit arguments)

foldl _ _ z _ (nil) --> z
foldl a b z f (cons h t) --> foldl a b (f h z) f t

foldr_append : forall (i : level) (a b : U i) (z : b) (f : a -> b -> b) (l1 l2 : list a) .
                  foldr z f (append l1 l2) = foldr (foldr z f l2) f l1 : b

foldl_append : forall (i : level) (a b : U i) (z : b) (f : a -> b -> b) (l1 l2 : list a) .
                  foldl z f (append l1 l2) = foldl (foldl z f l1) f l2 : b

Map

map : intersect (i : level) . forall (a b : U i) . (a -> b) -> list a -> list b
    (2 implicit arguments)

map _ b _ (nil) --> nil
map a b f (cons h t) --> cons (f h) (map a b f t)

map_compose : forall (i : level) (a b c : U i) (f : b -> c) (g : a -> b) (l : list a) .
                 map f (map g l) = map (fn x . f (g x)) l : list c

map_append : forall (i : level) (a b : U i) (f : a -> b) (l1 l2 : list a) .
                map f (append l1 l2) = append (map f l1) (map f l2) : list b

map_as_foldr : forall (i : level) (a b : U i) (f : a -> b) (l : list a) .
                  map f l = foldr nil (fn h t . f h :: t) l : list b

length_map : forall (i : level) (a b : U i) (f : a -> b) (l : list a) .
                length (map f l) = length l : nat

foldr_map : forall
               (i : level)
               (a b c : U i)
               (z : c)
               (f : b -> c -> c)
               (g : a -> b)
               (l : list a) .
               foldr z f (map g l) = foldr z (fn h t . f (g h) t) l : c

foldl_map : forall
               (i : level)
               (a b c : U i)
               (z : c)
               (f : b -> c -> c)
               (g : a -> b)
               (l : list a) .
               foldl z f (map g l) = foldl z (fn h t . f (g h) t) l : c

Reverse

reverse : intersect (i : level) . forall (a : U i) . list a -> list a
        (1 implicit argument)

reverse a (nil) --> nil
reverse a (cons h t) --> append a (reverse a t) (cons h nil)

reverse_as_foldl : forall (i : level) (a : U i) (l : list a) .
                      reverse l = foldl nil (fn h t . h :: t) l : list a

reverse_append : forall (i : level) (a : U i) (l1 l2 : list a) .
                    reverse (append l1 l2) = append (reverse l2) (reverse l1) : list a

reverse_invol : forall (i : level) (a : U i) (l : list a) . reverse (reverse l) = l : list a

length_reverse : forall (i : level) (a : U i) (l : list a) .
                    length (reverse l) = length l : nat

foldl_as_foldr : forall (i : level) (a b : U i) (z : b) (f : a -> b -> b) (l : list a) .
                    foldl z f l = foldr z f (reverse l) : b

foldr_as_foldl : forall (i : level) (a b : U i) (z : b) (f : a -> b -> b) (l : list a) .
                    foldr z f l = foldl z f (reverse l) : b

reverse_map : forall (i : level) (a b : U i) (f : a -> b) (l : list a) .
                 reverse (map f l) = map f (reverse l) : list b

Universal and existential predicates over lists

datatype
  intersect (i : level) .
  forall (a : U i) (P : a -> U i) .
  U i
of
  Forall : list a -> type =
  | Forall_nil : Forall nil
  | Forall_cons : forall h t . P h -> Forall t -> Forall (h :: t)

datatype
  intersect (i : level) .
  forall (a : U i) (P : a -> U i) .
  U i
of
  Exists : list a -> type =
  | Exists_hit : forall h t . P h -> Exists (h :: t)
  | Exists_miss : forall h t . Exists t -> Exists (h :: t)

(The first argument, a, is implicit in Forall, Exists, and their constructors.)

Forall_as_foldr : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
                     Forall P l <-> foldr unit (fn h Q . P h & Q) l

Exists_as_foldr : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
                     Exists P l <-> foldr void (fn h Q . P h % Q) l

In : intersect (i : level) . forall (a : U i) . a -> list a -> U i

In _ _ (nil) --> void
In a x (cons h t) --> x = h : a % In a x t

In_as_exists : forall (i : level) (a : U i) (x : a) (l : list a) .
                  In a x l <-> Exists (fn y . x = y : a) l

Forall_forall : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
                   Forall P l <-> (forall (x : a) . In a x l -> P x)

Exists_exists : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
                   Exists P l <-> (exists (x : a) . In a x l & P x)

Forall_nil_iff : forall (i : level) (a : U i) (P : a -> U i) . Forall P nil <-> unit

Exists_nil_iff : forall (i : level) (a : U i) (P : a -> U i) . Exists P nil <-> void

Forall_cons_iff : forall (i : level) (a : U i) (P : a -> U i) (x : a) (l : list a) .
                     Forall P (x :: l) <-> P x & Forall P l

Exists_cons_iff : forall (i : level) (a : U i) (P : a -> U i) (x : a) (l : list a) .
                     Exists P (x :: l) <-> P x % Exists P l

Forall_append : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
                   Forall P l1 -> Forall P l2 -> Forall P (append l1 l2)

Exists_append_1 : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
                     Exists P l1 -> Exists P (append l1 l2)

Exists_append_2 : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
                     Exists P l2 -> Exists P (append l1 l2)

Forall_append_iff : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
                       Forall P (append l1 l2) <-> Forall P l1 & Forall P l2

Exists_append_iff : forall (i : level) (a : U i) (P : a -> U i) (l1 l2 : list a) .
                       Exists P (append l1 l2) <-> Exists P l1 % Exists P l2

In_append : forall (i : level) (a : U i) (x : a) (l1 l2 : list a) .
               In a x (append l1 l2) <-> In a x l1 % In a x l2

Forall_implies : forall (i : level) (a : U i) (P Q : a -> U i) (l : list a) .
                    (forall (x : a) . P x -> Q x) -> Forall P l -> Forall Q l

Exists_implies : forall (i : level) (a : U i) (P Q : a -> U i) (l : list a) .
                    (forall (x : a) . P x -> Q x) -> Exists P l -> Exists Q l

Forall_map : forall (i : level) (a b : U i) (P : b -> U i) (f : a -> b) (l : list a) .
                Forall P (map f l) <-> Forall (fn x . P (f x)) l

Exists_map : forall (i : level) (a b : U i) (P : b -> U i) (f : a -> b) (l : list a) .
                Exists P (map f l) <-> Exists (fn x . P (f x)) l

In_map : forall (i : level) (a b : U i) (f : a -> b) (x : b) (l : list a) .
            In b x (map f l) <-> (exists (y : a) . In a y l & x = f y : b)

Forall_reverse : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
                    Forall P (reverse l) <-> Forall P l

Exists_reverse : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
                    Exists P (reverse l) <-> Exists P l

In_reverse : forall (i : level) (a : U i) (x : a) (l : list a) .
                In a x (reverse l) <-> In a x l

decidable_Forall_dep : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
                          (forall (x : a) . In a x l -> Decidable.decidable (P x))
                          -> Decidable.decidable (Forall P l)

decidable_Forall : forall (i : level) (a : U i) (P : a -> U i) .
                      (forall (x : a) . Decidable.decidable (P x))
                      -> forall (l : list a) . Decidable.decidable (Forall P l)

decidable_Exists_dep : forall (i : level) (a : U i) (P : a -> U i) (l : list a) .
                          (forall (x : a) . In a x l -> Decidable.decidable (P x))
                          -> Decidable.decidable (Exists P l)

decidable_Exists : forall (i : level) (a : U i) (P : a -> U i) .
                      (forall (x : a) . Decidable.decidable (P x))
                      -> forall (l : list a) . Decidable.decidable (Exists P l)

decidable_In : forall (i : level) (a : U i) .
                  (forall (x y : a) . Decidable.decidable (x = y : a))
                  -> forall (x : a) (l : list a) . Decidable.decidable (In a x l)

Nth

nth : intersect (lv : level) . forall (a : U lv) . list a -> nat -> Option.option a
    (1 implicit argument)

nth a (nil) _ --> None
nth a (cons h t) i --> nat_case i (Some h) (fn i' . nth a t i')

nth_within_length : forall (lv : level) (a : U lv) (l : list a) (i : nat) .
                       i < length l
                         <-> (exists (x : a) . nth l i = Option.Some x : Option.option a)

nth_outside_length : forall (lv : level) (a : U lv) (l : list a) (i : nat) .
                        length l <= i <-> nth l i = Option.None : Option.option a

nth_append_left : forall (lv : level) (a : U lv) (l1 l2 : list a) (i : nat) .
                     i < length l1 -> nth (append l1 l2) i = nth l1 i : Option.option a

nth_append_right : forall (lv : level) (a : U lv) (l1 l2 : list a) (i : nat) .
                      length l1 <= i
                      -> nth (append l1 l2) i = nth l2 (i - length l1) : Option.option a

nth_map : forall (lv : level) (a b : U lv) (f : a -> b) (l : list a) (i : nat) .
             nth (map f l) i = Option.map f (nth l i) : Option.option b

nth_In : forall (lv : level) (a : U lv) (l : list a) (i : nat) .
            Option.option_case (nth l i) unit (fn x . In a x l)

list_eq_by_nth : forall (i : level) (a : U i) (l l' : list a) .
                    length l = length l' : nat
                    -> (forall (j : nat) . j < length l -> nth l j = nth l' j : Option.option a)
                    -> l = l' : list a

Zip and Unzip

zip : intersect (i : level) . forall (a b : U i) . list a -> list b -> list (a & b)
    (2 implicit arguments)

zip a b (nil) _ --> nil
zip a b (cons h1 t1) l2 --> list_case b (list (a & b)) 
                              l2 
                              nil
                              (fn h2 t2 . cons (h1 , h2) (zip a b t1 t2))

unzip : intersect (i : level) . forall (a b : U i) . list (a & b) -> list a & list b
      (2 implicit arguments)

unzip a b (nil) --> (nil , nil)
unzip a b (cons h t) --> (cons (h #1) (unzip a b t #1) , cons (h #2) (unzip a b t #2))

zip_unzip : forall (i : level) (a b : U i) (l : list (a & b)) .
               zip (unzip l #1) (unzip l #2) = l : list (a & b)

unzip_zip : forall (i : level) (a b : U i) (l1 : list a) (l2 : list b) .
               length l1 = length l2 : nat -> unzip (zip l1 l2) = (l1, l2) : (list a & list b)

append_zip : forall (i : level) (a b : U i) (l1 l1' : list a) (l2 l2' : list b) .
                length l1 = length l2 : nat
                -> append (zip l1 l2) (zip l1' l2')
                     = zip (append l1 l1') (append l2 l2')
                     : list (a & b)

append_unzip : forall (i : level) (a b : U i) (l l' : list (a & b)) .
                  append (unzip l #1) (unzip l' #1) = unzip (append l l') #1 : list a
                  & append (unzip l #2) (unzip l' #2) = unzip (append l l') #2 : list b

length_zip : forall (i : level) (a b : U i) (l1 : list a) (l2 : list b) .
                length (zip l1 l2) = Nat.min (length l1) (length l2) : nat

length_unzip : forall (i : level) (a b : U i) (l : list (a & b)) .
                  length (unzip l #1) = length l : nat & length (unzip l #2) = length l : nat

reverse_zip : forall (i : level) (a b : U i) (l1 : list a) (l2 : list b) .
                 length l1 = length l2 : nat
                 -> reverse (zip l1 l2) = zip (reverse l1) (reverse l2) : list (a & b)

reverse_unzip : forall (i : level) (a b : U i) (l : list (a & b)) .
                   reverse (unzip l #1) = unzip (reverse l) #1 : list a
                   & reverse (unzip l #2) = unzip (reverse l) #2 : list b

nth_zip : forall (lv : level) (a b : U lv) (l1 : list a) (l2 : list b) (i : nat) .
             nth (zip l1 l2) i
               = Option.bind
                   (nth l1 i)
                   (fn x . Option.bind (nth l2 i) (fn y . Option.Some (x, y)))
               : Option.option (a & b)

nth_unzip : forall (lv : level) (a b : U lv) (l : list (a & b)) (i : nat) .
               nth (unzip l #1) i = Option.map (fn x . x #1) (nth l i) : Option.option a
               & nth (unzip l #2) i = Option.map (fn x . x #2) (nth l i) : Option.option b

Keep

keep : intersect (i : level) . forall (a : U i) . nat -> list a -> list a
     (1 implicit argument)

Keeping too many elements is permitted, and results in the full list.

keep _ zero _ --> nil
keep _ (succ _) nil --> nil
keep a (succ n) (cons h t) --> cons h (keep a n t)

keep_nil : forall (i : level) (a : U i) (n : nat) . keep n nil = nil : list a

length_keep_min : forall (i : level) (a : U i) (n : nat) (l : list a) .
                     length (keep n l) = Nat.min n (length l) : nat

length_keep_leq : forall (i : level) (a : U i) (n : nat) (l : list a) . length (keep n l) <= n

length_keep : forall (i : level) (a : U i) (n : nat) (l : list a) .
                 n <= length l -> length (keep n l) = n : nat

keep_idem : forall (i : level) (a : U i) (n : nat) (l : list a) .
               keep n (keep n l) = keep n l : list a

keep_append_leq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
                     n <= length l1 -> keep n (append l1 l2) = keep n l1 : list a

keep_append_geq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
                     length l1 <= n
                     -> keep n (append l1 l2) = append l1 (keep (n - length l1) l2) : list a

keep_append_eq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
                    n = length l1 : nat -> keep n (append l1 l2) = l1 : list a

keep_all : forall (i : level) (a : U i) (l : list a) . keep (length l) l = l : list a

keep_map : forall (i : level) (a b : U i) (n : nat) (f : a -> b) (l : list a) .
              keep n (map f l) = map f (keep n l) : list b

Forall_keep_weaken : forall (i : level) (a : U i) (P : a -> U i) (n : nat) (l : list a) .
                        Forall P l -> Forall P (keep n l)

Exists_keep_weaken : forall (i : level) (a : U i) (P : a -> U i) (n : nat) (l : list a) .
                        Exists P (keep n l) -> Exists P l

In_keep_weaken : forall (i : level) (a : U i) (x : a) (n : nat) (l : list a) .
                    In a x (keep n l) -> In a x l

nth_keep : forall (i : level) (a : U i) (m n : nat) (l : list a) .
              n < m -> nth (keep m l) n = nth l n : Option.option a

Drop

drop : intersect (i : level) . forall (a : U i) . nat -> list a -> list a
     (1 implicit argument)

Dropping too many elements is permitted, and results in the empty list.

drop _ zero l --> l
drop _ (succ _) nil --> nil
drop _ (succ n) (cons h t) --> drop n t

drop_nil : forall (i : level) (a : U i) (n : nat) . drop n nil = nil : list a

length_drop : forall (i : level) (a : U i) (n : nat) (l : list a) .
                 length (drop n l) = length l - n : nat

drop_plus : forall (i : level) (a : U i) (l : list a) (m n : nat) .
               drop n (drop m l) = drop (m + n) l : list a

drop_append_leq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
                     n <= length l1 -> drop n (append l1 l2) = append (drop n l1) l2 : list a

drop_append_geq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
                     length l1 <= n -> drop n (append l1 l2) = drop (n - length l1) l2 : list a

drop_append_eq : forall (i : level) (a : U i) (n : nat) (l1 l2 : list a) .
                    n = length l1 : nat -> drop n (append l1 l2) = l2 : list a

drop_all : forall (i : level) (a : U i) (l : list a) . drop (length l) l = nil : list a

drop_map : forall (i : level) (a b : U i) (n : nat) (f : a -> b) (l : list a) .
              drop n (map f l) = map f (drop n l) : list b

Forall_drop_weaken : forall (i : level) (a : U i) (P : a -> U i) (n : nat) (l : list a) .
                        Forall P l -> Forall P (drop n l)

Exists_drop_weaken : forall (i : level) (a : U i) (P : a -> U i) (n : nat) (l : list a) .
                        Exists P (drop n l) -> Exists P l

In_drop_weaken : forall (i : level) (a : U i) (x : a) (n : nat) (l : list a) .
                    In a x (drop n l) -> In a x l

nth_drop : forall (i : level) (a : U i) (m n : nat) (l : list a) .
              nth (drop m l) n = nth l (m + n) : Option.option a

nth_as_drop : forall (i : level) (a : U i) (l : list a) (n : nat) .
                 nth l n
                   = list_case (drop n l) Option.None (fn h v0 . Option.Some h)
                   : Option.option a

split_list : forall (i : level) (a : U i) (n : nat) (l : list a) .
                l = append (keep n l) (drop n l) : list a

Map_flat

map_flat : intersect (i : level) . forall (a b : U i) . (a -> list b) -> list a -> list b
         (2 implicit arguments)

map_flat _ b _ (nil) --> nil
map_flat a b f (cons h t) --> append b (f h) (map_flat a b f t)

In_map_flat : forall (i : level) (a b : U i) (f : a -> list b) (x : b) (l : list a) .
                 In b x (map_flat f l) <-> (exists (y : a) . In a y l & In b x (f y))

map_flat_as_foldr : forall (i : level) (a b : U i) (f : a -> list b) (l : list a) .
                       map_flat f l = foldr nil (fn h t . append (f h) t) l : list b

For all pairs of distinct elements

datatype
  intersect (i : level) .
  forall (a : U i) (P : a -> a -> U i) .
  U i
of
  Forall_dist : list a -> type =
  
  | Forall_dist_nil :
      Forall_dist nil
  
  | Forall_dist_cons :
      forall h t .
        Forall (P h) t
        -> Forall_dist t
        -> Forall_dist (cons h t)

(The first argument, a, is implicit in Forall_dist and its constructors)

Forall_dist_nil_iff : forall (i : level) (a : U i) (P : a -> a -> U i) .
                         Forall_dist P nil <-> unit

Forall_dist_cons_iff : forall (i : level) (a : U i) (P : a -> a -> U i) (x : a) (l : list a) .
                          Forall_dist P (x :: l) <-> Forall (P x) l & Forall_dist P l

Forall_dist_append : forall (i : level) (a : U i) (P : a -> a -> U i) (l1 l2 : list a) .
                        Forall (fn x . Forall (P x) l2) l1
                        -> Forall_dist P l1
                        -> Forall_dist P l2
                        -> Forall_dist P (append l1 l2)

Forall_dist_append_iff : forall (i : level) (a : U i) (P : a -> a -> U i) (l1 l2 : list a) .
                            Forall_dist P (append l1 l2)
                              <-> Forall (fn x . Forall (P x) l2) l1
                                  & Forall_dist P l1
                                  & Forall_dist P l2

Forall_dist_implies : forall (i : level) (a : U i) (P Q : a -> a -> U i) (l : list a) .
                         (forall (x y : a) . P x y -> Q x y)
                         -> Forall_dist P l
                         -> Forall_dist Q l

Forall_dist_map : forall
                     (i : level)
                     (a b : U i)
                     (P : b -> b -> U i)
                     (f : a -> b)
                     (l : list a) .
                     Forall_dist P (map f l) <-> Forall_dist (fn x y . P (f x) (f y)) l

Forall_dist_reverse : forall (i : level) (a : U i) (P : a -> a -> U i) (l : list a) .
                         (forall (x y : a) . P x y -> P y x)
                         -> Forall_dist P (reverse l) <-> Forall_dist P l

decidable_Forall_dist_dep : forall (i : level) (a : U i) (P : a -> a -> U i) (l : list a) .
                               (forall (x y : a) .
                                  In a x l -> In a y l -> Decidable.decidable (P x y))
                               -> Decidable.decidable (Forall_dist P l)

decidable_Forall_dist : forall (i : level) (a : U i) (P : a -> a -> U i) (l : list a) .
                           (forall (x y : a) . Decidable.decidable (P x y))
                           -> Decidable.decidable (Forall_dist P l)

Lists are covariant

list_subtype : forall (i : level) (a b : U i) . a <: b -> list a <: list b

Note that this fact relies on nil and cons’s type argument being invisible (i.e., taken using intersect).