Istari

Irrelevance

We say that x appears only in irrelevant positions within M (or, more briefly, that x is irrelevant in M) if x does not contribute to the computational or semantic meaning of M. Intuitively, this the case when fully unfolding all the constants in M and normalizing the result results in a normal form that does not contain x.

To define irrelevance, we use the constant unavailable as a stand-in for terms that are not available for relevant use. Using it, we define irrelevance by:

irrelevant = fn f .
                intersect (x : Misc.nonsense) . SyntacticEquality.sequal (f x) (f unavailable)

Some examples of irrelevant positions are x and A in f ap x, f Ap x, abort x, M :> A and fn (x : A) . M.

Proof irrelevance modality

Irrelevance of x in M is a requirement for fn x . M to be a parametric function. Parametric functions provide one important tool for proof irrelevance, and weak sums provide another. Still another is the proof irrelevance modality:

pirr : intersect (i : level) . U i -> U i
     = fn a . isquash a

The type pirr A expresses the fact that A is true but its computational content is unavailable. It is defined using the squash type, but unlike squash it offers intro and elim forms.

inpi : intersect (i : level) (a : U i) . a -> pirr a
     = fn m . ()

outpi : intersect (i : level) (a b : U i) . pirr a -> (parametric (v0 : a) . b) -> b
      = fn m f . f unavailable

Importantly, x is irrelevant in inpi x, which means that hidden variables can be used in that position. Less importantly, x is irrelevant in outpi x f.

Observe that outpi M (fn x . N) allows the unknown inhabitant of A to be used in N, so long as x is irrelevant in N. When that inhabitant becomes known, we can reduce:

outpi (inpi m) f --> f Ap m

All proofs are equal at a proof irrelevant type:

pirr_ext : forall (i : level) (a : U i) (m m' : pirr a) . m = m' : pirr a

Implication induces subtyping on pirr:

pirr_subtype : forall (i : level) (a b : U i) . (a -> b) -> pirr a <: pirr b

pirr_eeqtp : forall (i : level) (a b : U i) . a <-> b -> pirr a <:> pirr b

However, care must be taken when using these. If a proof x is extracted from pirr A, and A is changed to B, any uses of x must be adjusted (e.g., using the convertIrr rewrite) to account for the fact that x now proves B instead of A. For this reason, pirr_subtype and pirr_eeqtp are not employed automatically.

Proof irrelevance commutes with the future modality:

pirr_from_future : intersect (i : level) .
                      forallfut (a : U i) . future (pirr a) -> pirr (future a)
                 = fn a m . ()

future_from_pirr : intersect (i : level) .
                      forallfut (a : U i) . pirr (future a) -> future (pirr a)
                 = fn a m . next ()

pirr_from_future_inv : forall (i : level) .
                          forallfut (a : U i) .
                            forall (m : future (pirr a)) .
                              future_from_pirr (pirr_from_future m) = m : future (pirr a)

future_from_pirr_inv : forall (i : level) .
                          forallfut (a : U i) .
                            forall (m : pirr (future a)) .
                              pirr_from_future (future_from_pirr m) = m : pirr (future a)

(The latter direction is actually an instance of pirr_ext.) The untyped reductions eliminate the commutations, but they leave eta redices:

pirr_from_future _ (future_from_pirr _ x) --> let inpi y = x in inpi y

future_from_pirr _ (pirr_from_future _ x) --> let next y = x in let inpi z = y in next (inpi z)

Impredicative functions

Impredicative functions are isomorphic to parametric functions:

iforall_to_parametric : intersect (i : level) (a : Kind i) (b : a -> U i) .
                           (iforall (x : a) . b x) -> parametric (x : a) . b x
                      = fn f x . f

parametric_to_iforall : intersect (i : level) (a : Kind i) (b : a -> U i) .
                           (parametric (x : a) . b x) -> iforall (x : a) . b x
                      = fn f . f unavailable

iforall_to_parametric_inverse : forall
                                   (i : level)
                                   (a : Kind i)
                                   (b : a -> U i)
                                   (f : iforall (x : a) . b x) .
                                   parametric_to_iforall (iforall_to_parametric f)
                                     = f
                                     : (iforall (x : a) . b x)

parametric_to_iforall_inverse : forall
                                   (i : level)
                                   (a : Kind i)
                                   (b : a -> U i)
                                   (f : parametric (x : a) . b x) .
                                   iforall_to_parametric (parametric_to_iforall f)
                                     = f
                                     : (parametric (x : a) . b x)

As a corollary:

iforall_parametric_equipollent : forall (i : level) (a : Kind i) (b : a -> U i) .
                                    Function.equipollent
                                      (iforall (x : a) . b x)
                                      (parametric (x : a) . b x)