Istari

Weaksum: an improved interface for union types

Weak sums provide an alternative interface for union types, using introduction and elimination forms rather than retyping rules (i.e., rules that give a single term multiple types).

weaksum : intersect (i : level) . forall (a : U i) . (a -> U i) -> U i
        = fn a b . union (x : a) . b x

The introduction form for the weak sum is pack:

pack : intersect (i : level) .
          forall (a : U i) (b : a -> U i) (x : a) . b x -> weaksum (x1 : a) . b x1
     = fn a b x y . y
     (1 implicit argument)

The elimination form is unpack. Note that the body has only parametric access to the witness term:

unpack : intersect (i : level) .
            forall (a : U i) (b : a -> U i) (c : U i) .
              (weaksum (x : a) . b x) -> (parametric (x : a) . b x -> c) -> c
       = fn a b c y f . f Irrelevance.unavailable y
       (3 implicit arguments)

`unpack _ _ _ (`pack _ _ x y) f --> f Ap x y

The syntactic sugar unpack (x, y) = u in m is accepted for unpack u (fn x y . m).

Weaksum is covariant and preserves extensional equality:

weaksum_subtype : forall (i : level) (a a' : U i) (b : a -> U i) (b' : a' -> U i) .
                     a <: a'
                     -> (forall (x : a) . b x <: b' x)
                     -> (weaksum (x : a) . b x) <: (weaksum (x : a') . b' x)

weaksum_eeqtp : forall (i : level) (a a' : U i) (b : a -> U i) (b' : a' -> U i) .
                   a <:> a'
                   -> (forall (x : a) . b x <:> b' x)
                   -> (weaksum (x : a) . b x) <:> (weaksum (x : a') . b' x)

Since the body of the unpack has only parametric access to the witness term, it is unsuitable for composing predicates that talk about a weak sum’s witness term. For that, we can define unpackt:

unpackt : intersect (i : level) .
             forall (a : U i) (b : a -> U i) .
               (forall (x : a) . b x -> U i) -> (weaksum (x : a) . b x) -> U i
        = fn a b t u .
             weaksum (x : a) .
               exists (y : b x) . pack b x y = u : (weaksum (x1 : a) . b x1) & t x y
        (2 implicit arguments)

The syntactic sugar unpackt (x, y) = u in c is accepted for unpackt (fn x y . c) u.

The introduction form for unpackt inhabits it when the weak sum being unpacked is a known package:

unpackt_intro : intersect (i : level) .
                   forall
                     (a : U i)
                     (b : a -> U i)
                     (c : forall (x : a) . b x -> U i)
                     (x : a)
                     (y : b x) .
                     c x y -> unpackt c (pack b x y)
              = fn a b c x y z .
                   pack
                     (fn x' .
                       exists (y' : b x') .
                         pack b x' y' = pack b x y : (weaksum (x1 : a) . b x1) & c x' y')
                     x
                     (y, (), z)
              (3 implicit arguments)

The elimination form allows one to move from an unpackt to some other predicate about the weak sum in question. Naturally, the implication (the final argument) has only parametric access to the witness term.

unpackt_elim : intersect (i : level) .
                  forall
                    (a : U i)
                    (b : a -> U i)
                    (c : forall (x : a) . b x -> U i)
                    (d : (weaksum (x : a) . b x) -> U i)
                    (z : weaksum (x : a) . b x) .
                    unpackt c z
                    -> (parametric (x : a) . forall (y : b x) . c x y -> d (pack b x y))
                    -> d z
             = fn a b c d z w f . unpack (x, w') = w in f Ap x (w' #1) (w' #2 #2)
             (4 implicit arguments)

`unpackt_elim _ _ _ _ _ (`unpackt_intro _ _ _ x y z) f --> f Ap x y z

Impredicative existentials are isomorphic (indeed, extensionally equivalent) to weak sums:

iexists_weaksum : forall (i : level) (a : Kind i) (b : a -> U i) .
                     (iexists (x : a) . b x) <:> (weaksum (x : a) . b x)

We may quantify impredicatively using weaksums:

weaksum_kindlike : forall (i : level) (A : U (1 + i)) .
                      Kindlike.kindlike i A
                      -> exists (Q : (A -> U i) -> U i) .
                           forall (B : A -> U i) . Q B <:> (weaksum (x : A) . B x)