Weaksum
: an improved interface for union typesWeak sums provide an alternative interface for union types, using introduction and elimination forms rather than retyping rules (i.e., rules that give a single term multiple types).
weaksum : intersect (i : level) . forall (a : U i) . (a -> U i) -> U i
= fn a b . union (x : a) . b x
The introduction form for the weak sum is pack
:
pack : intersect (i : level) .
forall (a : U i) (b : a -> U i) (x : a) . b x -> weaksum (x1 : a) . b x1
= fn a b x y . y
(1 implicit argument)
The elimination form is unpack
. Note that the body has only
parametric access to the witness term:
unpack : intersect (i : level) .
forall (a : U i) (b : a -> U i) (c : U i) .
(weaksum (x : a) . b x) -> (parametric (x : a) . b x -> c) -> c
= fn a b c y f . f Irrelevance.unavailable y
(3 implicit arguments)
`unpack _ _ _ (`pack _ _ x y) f --> f Ap x y
The syntactic sugar unpack (x, y) = u in m
is accepted for
unpack u (fn x y . m)
.
Weaksum is covariant and preserves extensional equality:
weaksum_subtype : forall (i : level) (a a' : U i) (b : a -> U i) (b' : a' -> U i) .
a <: a'
-> (forall (x : a) . b x <: b' x)
-> (weaksum (x : a) . b x) <: (weaksum (x : a') . b' x)
weaksum_eeqtp : forall (i : level) (a a' : U i) (b : a -> U i) (b' : a' -> U i) .
a <:> a'
-> (forall (x : a) . b x <:> b' x)
-> (weaksum (x : a) . b x) <:> (weaksum (x : a') . b' x)
Since the body of the unpack
has only parametric access to the
witness term, it is unsuitable for composing predicates that talk
about a weak sum’s witness term. For that, we can define
unpackt
:
unpackt : intersect (i : level) .
forall (a : U i) (b : a -> U i) .
(forall (x : a) . b x -> U i) -> (weaksum (x : a) . b x) -> U i
= fn a b t u .
weaksum (x : a) .
exists (y : b x) . pack b x y = u : (weaksum (x1 : a) . b x1) & t x y
(2 implicit arguments)
The syntactic sugar unpackt (x, y) = u in c
is accepted for
unpackt (fn x y . c) u
.
The introduction form for unpackt
inhabits it when the weak sum
being unpacked is a known package:
unpackt_intro : intersect (i : level) .
forall
(a : U i)
(b : a -> U i)
(c : forall (x : a) . b x -> U i)
(x : a)
(y : b x) .
c x y -> unpackt c (pack b x y)
= fn a b c x y z .
pack
(fn x' .
exists (y' : b x') .
pack b x' y' = pack b x y : (weaksum (x1 : a) . b x1) & c x' y')
x
(y, (), z)
(3 implicit arguments)
The elimination form allows one to move from an unpackt
to some
other predicate about the weak sum in question. Naturally, the
implication (the final argument) has only parametric access to the
witness term.
unpackt_elim : intersect (i : level) .
forall
(a : U i)
(b : a -> U i)
(c : forall (x : a) . b x -> U i)
(d : (weaksum (x : a) . b x) -> U i)
(z : weaksum (x : a) . b x) .
unpackt c z
-> (parametric (x : a) . forall (y : b x) . c x y -> d (pack b x y))
-> d z
= fn a b c d z w f . unpack (x, w') = w in f Ap x (w' #1) (w' #2 #2)
(4 implicit arguments)
`unpackt_elim _ _ _ _ _ (`unpackt_intro _ _ _ x y z) f --> f Ap x y z
Impredicative existentials are isomorphic (indeed, extensionally equivalent) to weak sums:
iexists_weaksum : forall (i : level) (a : Kind i) (b : a -> U i) .
(iexists (x : a) . b x) <:> (weaksum (x : a) . b x)
We may quantify impredicatively using weaksums:
weaksum_kindlike : forall (i : level) (A : U (1 + i)) .
Kindlike.kindlike i A
-> exists (Q : (A -> U i) -> U i) .
forall (B : A -> U i) . Q B <:> (weaksum (x : A) . B x)