Conventions:
A rule is written [conclusion] >> [premise] ... [premise]
.
When a rule has no premises, the >>
is omitted.
The argument n
is the length of the context G2
, in rules where
G2
appears.
Omitted extracts in the conclusion are taken to be ()
. Omitted
extracts in premises are unused.
Structural
Reduction
Dependent functions
Functions
T-Functions
K-Functions
Intersection types
Guarded types
Strong sums
Products
Semi-dependent products
Union types
Coguarded types
Disjoint sums
Future modality
Recursive types
Inductive types
Void
Unit
Bool
Natural numbers
Universes
Kinds
Levels
Equality
Typing
Type equality
Type formation
Subtyping
Subset types
Intensional subset types
Squash
Intensional squash
Quotient types
Impredicative universals
Impredicative polymorphism
Impredicative existentials
Miscellaneous
Syntactic equality
Partial types
Let hypotheses
Integers
Rewriting
hypothesis n
G1, A, G2 |- A[^n+1] ext n
hypothesisOf n
G1, A, G2 |- of A[^n+1] n
hypothesisEq n
G1, A, G2 |- eq A[^n+1] n n
hypothesisOfTp n
G1, type, G2 |- istp n
hypothesisEqTp n
G1, type, G2 |- eqtp n n
weaken m n
G1, G2, G3[^n] |- A[under_m (^n)] ext M[under_m (^n)]
>>
G1, G3 |- A ext M
(where m = length(G3) and n = length(G2))
exchange l m n
G1, G2, G3[^n], G4[s] |- A[under_l (s)] ext M[under_l (s)]
>>
G1, G3, G2[^m], G4 |- A ext M
(where l = length(G4), m = length(G3), n = length(G2),
s = m ... m+n-1 . 0 ... m-1 . ^m+n)
reduce red
G |- C ext M
>>
G |- D ext M
(where red reduces C to D)
unreduce C red
G |- D ext M
>>
G |- C ext M
(where red reduces C to D)
reduceAt i C M red
G |- C[under_i (M . id)] ext P
>>
G |- C[under_i (N . id)] ext P
(where red reduces M to N)
unreduceAt i C M red
G |- C[under_i (N . id)] ext P
>>
G |- C[under_i (M . id)] ext P
(where red reduces M to N)
reduceHyp n red
G1, C, G2 |- C ext M
>>
G1, D, G2 |- C ext M
(where red reduces C to D)
unreduceHyp n C red
G1, D, G2 |- C ext M
>>
G1, C, G2 |- C ext M
(where red reduces C to D)
reduceHypAt n i H M red
G1, H[under_i (M . id)], G2 |- C ext P
>>
G1, H[under_i (N . id)], G2 |- C ext P
(where red reduces M to N)
unreduceHypAt n i H M red
G1, H[under_i (N . id)], G2 |- C ext P
>>
G1, H[under_i (M . id)], G2 |- C ext P
(where red reduces M to N)
whnfHardConcl
G |- C ext M
>>
G |- D ext M
(where the hard weak-head normal form of C is D)
whnfHardHyp n
G1, H, G2 |- C ext M
>>
G1, H', G2 |- C ext M
(where the hard weak-head normal form of H is H')
normalizeConcl
G |- C ext M
>>
G |- D ext M
(where the normal form of C is D)
normalizeHyp n
G1, H, G2 |- C ext M
>>
G1, H', G2 |- C ext M
(where the normal form of H is H')
forallForm A B
G |- istp (forall A (fn . B))
>>
G |- istp A
G, A |- istp B
forallEq A A' B B'
G |- eqtp (forall A (fn . B)) (forall A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B B'
forallFormUniv A B I
G |- of (univ I) (forall A (fn . B))
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B
forallEqUniv A A' B B' I
G |- eq (univ I) (forall A (fn . B)) (forall A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B B'
forallSub A A' B B'
G |- subtype (forall A (fn . B)) (forall A' (fn . B'))
>>
G |- subtype A' A
G, A' |- subtype B B'
G, A |- istp B
forallIntroOf A B M
G |- of (forall A (fn . B)) (fn . M)
>>
G |- istp A
G, A |- of B M
forallIntroEq A B M N
G |- eq (forall A (fn . B)) (fn . M) (fn . N)
>>
G |- istp A
G, A |- eq B M N
forallIntro A B
G |- forall A (fn . B) ext fn . M
>>
G |- istp A
G, A |- B ext M
forallElimOf A B M P
G |- of B[P . id] (M P)
>>
G |- of (forall A (fn . B)) M
G |- of A P
forallElimEq A B M N P Q
G |- eq B[P . id] (M P) (N Q)
>>
G |- eq (forall A (fn . B)) M N
G |- eq A P Q
forallElim A B P
G |- B[P . id] ext M P
>>
G |- forall A (fn . B) ext M
G |- of A P
forallEta A B M
G |- eq (forall A (fn . B)) M (fn . M[^1] 0)
>>
G |- of (forall A (fn . B)) M
forallExt A B M N
G |- eq (forall A (fn . B)) M N
>>
G |- of (forall A (fn . B)) M
G |- of (forall A (fn . B)) N
G, A |- eq B (M[^1] 0) (N[^1] 0)
forallExt' A A' A'' B B' B'' M N
G |- eq (forall A (fn . B)) M N
>>
G |- istp A
G |- of (forall A' (fn . B')) M
G |- of (forall A'' (fn . B'')) N
G, A |- eq B (M[^1] 0) (N[^1] 0)
forallOfExt A A' B B' M
G |- of (forall A (fn . B)) M
>>
G |- istp A
G |- of (forall A' (fn . B')) M
G, A |- of B (M[^1] 0)
forallFormInv1 A B
G |- istp A
>>
G |- istp (forall A (fn . B))
forallFormInv2 A B M
G |- istp B[M . id]
>>
G |- istp (forall A (fn . B))
G |- of A M
arrowForm A B
G |- istp (arrow A B)
>>
G |- istp A
G, A |- istp B[^1]
arrowEq A A' B B'
G |- eqtp (arrow A B) (arrow A' B')
>>
G |- eqtp A A'
G, A |- eqtp B[^1] B'[^1]
arrowFormUniv A B I
G |- of (univ I) (arrow A B)
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B[^1]
arrowEqUniv A A' B B' I
G |- eq (univ I) (arrow A B) (arrow A' B')
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B[^1] B'[^1]
arrowForallEq A A' B B'
G |- eqtp (arrow A B) (forall A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B[^1] B'
arrowForallEqUniv A A' B B' I
G |- eq (univ I) (arrow A B) (forall A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B[^1] B'
arrowSub A A' B B'
G |- subtype (arrow A B) (arrow A' B')
>>
G |- subtype A' A
G |- subtype B B'
arrowForallSub A A' B B'
G |- subtype (arrow A B) (forall A' (fn . B'))
>>
G |- subtype A' A
G, A' |- subtype B[^1] B'
G |- istp B
forallArrowSub A A' B B'
G |- subtype (forall A (fn . B)) (arrow A' B')
>>
G |- subtype A' A
G, A' |- subtype B B'[^1]
G, A |- istp B
arrowIntroOf A B M
G |- of (arrow A B) (fn . M)
>>
G |- istp A
G, A |- of B[^1] M
arrowIntroEq A B M N
G |- eq (arrow A B) (fn . M) (fn . N)
>>
G |- istp A
G, A |- eq B[^1] M N
arrowIntro A B
G |- arrow A B ext fn . M
>>
G |- istp A
G, A |- B[^1] ext M
arrowElimOf A B M P
G |- of B (M P)
>>
G |- of (arrow A B) M
G |- of A P
arrowElimEq A B M N P Q
G |- eq B (M P) (N Q)
>>
G |- eq (arrow A B) M N
G |- eq A P Q
arrowElim A B
G |- B ext M P
>>
G |- arrow A B ext M
G |- A ext P
arrowEta A B M
G |- eq (arrow A B) M (fn . M[^1] 0)
>>
G |- of (arrow A B) M
arrowExt A B M N
G |- eq (arrow A B) M N
>>
G |- of (arrow A B) M
G |- of (arrow A B) N
G, A |- eq B[^1] (M[^1] 0) (N[^1] 0)
arrowExt' A A' A'' B B' B'' M N
G |- eq (arrow A B) M N
>>
G |- istp A
G |- of (forall A' (fn . B')) M
G |- of (forall A'' (fn . B'')) N
G, A |- eq B[^1] (M[^1] 0) (N[^1] 0)
arrowOfExt A A' B B' M
G |- of (arrow A B) M
>>
G |- istp A
G |- of (forall A' (fn . B')) M
G, A |- of B[^1] (M[^1] 0)
arrowFormInv1 A B
G |- istp A
>>
G |- istp (arrow A B)
arrowFormInv2 A B M
G |- istp B
>>
G |- istp (arrow A B)
G |- of A M
tarrowKind A I K
G |- of (kind I) (tarrow A K)
>>
G |- of (univ I) A
G |- of (kind I) K
tarrowKindEq A A' I K K'
G |- eq (kind I) (tarrow A K) (tarrow A' K')
>>
G |- eq (univ I) A A'
G |- eq (kind I) K K'
tarrowForm A B
G |- istp (tarrow A B)
>>
G |- istp A
G |- istp B
tarrowEq A A' B B'
G |- eqtp (tarrow A B) (tarrow A' B')
>>
G |- eqtp A A'
G |- eqtp B B'
tarrowFormUniv A B I
G |- of (univ I) (tarrow A B)
>>
G |- of (univ I) A
G |- of (univ I) B
tarrowEqUniv A A' B B' I
G |- eq (univ I) (tarrow A B) (tarrow A' B')
>>
G |- eq (univ I) A A'
G |- eq (univ I) B B'
tarrowArrowEq A A' B B'
G |- eqtp (tarrow A B) (arrow A' B')
>>
G |- eqtp A A'
G |- eqtp B B'
tarrowArrowEqUniv A A' B B' I
G |- eq (univ I) (tarrow A B) (arrow A' B')
>>
G |- eq (univ I) A A'
G |- eq (univ I) B B'
tarrowForallEq A A' B B'
G |- eqtp (tarrow A B) (forall A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B[^1] B'
G |- istp B
tarrowForallEqUniv A A' B B' I
G |- eq (univ I) (tarrow A B) (forall A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B[^1] B'
G |- of (univ I) B
tarrowIntroOf A B M
G |- of (tarrow A B) (fn . M)
>>
G |- istp A
G |- istp B
G, A |- of B[^1] M
tarrowIntroEq A B M N
G |- eq (tarrow A B) (fn . M) (fn . N)
>>
G |- istp A
G |- istp B
G, A |- eq B[^1] M N
tarrowIntro A B
G |- tarrow A B ext fn . M
>>
G |- istp A
G |- istp B
G, A |- B[^1] ext M
tarrowElimOf A B M P
G |- of B (M P)
>>
G |- of (tarrow A B) M
G |- of A P
tarrowElimEq A B M N P Q
G |- eq B (M P) (N Q)
>>
G |- eq (tarrow A B) M N
G |- eq A P Q
tarrowElim A B
G |- B ext M P
>>
G |- tarrow A B ext M
G |- A ext P
tarrowEta A B M
G |- eq (tarrow A B) M (fn . M[^1] 0)
>>
G |- of (tarrow A B) M
tarrowExt A B M N
G |- eq (tarrow A B) M N
>>
G |- istp B
G |- of (tarrow A B) M
G |- of (tarrow A B) N
G, A |- eq B[^1] (M[^1] 0) (N[^1] 0)
tarrowOfExt A A' B B' M
G |- of (tarrow A B) M
>>
G |- istp A
G |- istp B
G |- of (forall A' (fn . B')) M
G, A |- of B[^1] (M[^1] 0)
karrowKind I K L
G |- of (kind I) (karrow K L)
>>
G |- of (kind I) K
G |- of (kind I) L
karrowKindEq I K K' L L'
G |- eq (kind I) (karrow K L) (karrow K' L')
>>
G |- eq (kind I) K K'
G |- eq (kind I) L L'
karrowForm A B
G |- istp (karrow A B)
>>
G |- istp A
G |- istp B
karrowEq A A' B B'
G |- eqtp (karrow A B) (karrow A' B')
>>
G |- eqtp A A'
G |- eqtp B B'
karrowFormUniv A B I
G |- of (univ I) (karrow A B)
>>
G |- of (univ I) A
G |- of (univ I) B
karrowEqUniv A A' B B' I
G |- eq (univ I) (karrow A B) (karrow A' B')
>>
G |- eq (univ I) A A'
G |- eq (univ I) B B'
karrowArrowEq A A' B B'
G |- eqtp (karrow A B) (arrow A' B')
>>
G |- eqtp A A'
G |- eqtp B B'
karrowArrowEqUniv A A' B B' I
G |- eq (univ I) (karrow A B) (arrow A' B')
>>
G |- eq (univ I) A A'
G |- eq (univ I) B B'
karrowForallEq A A' B B'
G |- eqtp (karrow A B) (forall A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B[^1] B'
G |- istp B
karrowForallEqUniv A A' B B' I
G |- eq (univ I) (karrow A B) (forall A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B[^1] B'
G |- of (univ I) B
karrowIntroOf A B M
G |- of (karrow A B) (fn . M)
>>
G |- istp A
G |- istp B
G, A |- of B[^1] M
karrowIntroEq A B M N
G |- eq (karrow A B) (fn . M) (fn . N)
>>
G |- istp A
G |- istp B
G, A |- eq B[^1] M N
karrowIntro A B
G |- karrow A B ext fn . M
>>
G |- istp A
G |- istp B
G, A |- B[^1] ext M
karrowElimOf A B M P
G |- of B (M P)
>>
G |- of (karrow A B) M
G |- of A P
karrowElimEq A B M N P Q
G |- eq B (M P) (N Q)
>>
G |- eq (karrow A B) M N
G |- eq A P Q
karrowElim A B
G |- B ext M P
>>
G |- karrow A B ext M
G |- A ext P
karrowEta A B M
G |- eq (karrow A B) M (fn . M[^1] 0)
>>
G |- of (karrow A B) M
karrowExt A B M N
G |- eq (karrow A B) M N
>>
G |- istp B
G |- of (karrow A B) M
G |- of (karrow A B) N
G, A |- eq B[^1] (M[^1] 0) (N[^1] 0)
karrowOfExt A A' B B' M
G |- of (karrow A B) M
>>
G |- istp A
G |- istp B
G |- of (forall A' (fn . B')) M
G, A |- of B[^1] (M[^1] 0)
intersectForm A B
G |- istp (intersect A (fn . B))
>>
G |- istp A
G, A |- istp B
intersectEq A A' B B'
G |- eqtp (intersect A (fn . B)) (intersect A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B B'
intersectFormUniv A B I
G |- of (univ I) (intersect A (fn . B))
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B
intersectEqUniv A A' B B' I
G |- eq (univ I) (intersect A (fn . B)) (intersect A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B B'
intersectSub A A' B B'
G |- subtype (intersect A (fn . B)) (intersect A' (fn . B'))
>>
G |- subtype A' A
G, A' |- subtype B B'
G, A |- istp B
intersectIntroOf A B M
G |- of (intersect A (fn . B)) M
>>
G |- istp A
G, A |- of B M[^1]
intersectIntroEq A B M N
G |- eq (intersect A (fn . B)) M N
>>
G |- istp A
G, A |- eq B M[^1] N[^1]
intersectIntro A B
G |- intersect A (fn . B) ext M[() . id]
>>
G |- istp A
G, (hidden) A |- B ext M
intersectElimOf A B M P
G |- of B[P . id] M
>>
G |- of (intersect A (fn . B)) M
G |- of A P
intersectElimEq A B M N P
G |- eq B[P . id] M N
>>
G |- eq (intersect A (fn . B)) M N
G |- of A P
intersectElim A B P
G |- B[P . id] ext M
>>
G |- intersect A (fn . B) ext M
G |- of A P
intersectFormInv1 A B
G |- istp A
>>
G |- istp (intersect A (fn . B))
intersectFormInv2 A B M
G |- istp B[M . id]
>>
G |- istp (intersect A (fn . B))
G |- of A M
guardForm A B
G |- istp (guard A B)
>>
G |- istp A
G, A |- istp B[^1]
guardEq A A' B B'
G |- eqtp (guard A B) (guard A' B')
>>
G |- iff A A'
G, A |- eqtp B[^1] B'[^1]
guardFormUniv A B I
G |- of (univ I) (guard A B)
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B[^1]
guardEqUniv A A' B B' I
G |- eq (univ I) (guard A B) (guard A' B')
>>
G |- of (univ I) A
G |- of (univ I) A'
G |- iff A A'
G, A |- eq (univ I[^1]) B[^1] B'[^1]
guardIntroOf A B M
G |- of (guard A B) M
>>
G |- istp A
G, A |- of B[^1] M[^1]
guardIntroEq A B M N
G |- eq (guard A B) M N
>>
G |- istp A
G, A |- eq B[^1] M[^1] N[^1]
guardIntro A B
G |- guard A B ext M[() . id]
>>
G |- istp A
G, (hidden) A |- B[^1] ext M
guardElimOf A B M
G |- of B M
>>
G |- of (guard A B) M
G |- A
guardElimEq A B M N
G |- eq B M N
>>
G |- eq (guard A B) M N
G |- A
guardElim A B
G |- B ext M
>>
G |- guard A B ext M
G |- A
guardSatEq A B
G |- eqtp B (guard A B)
>>
G |- istp B
G |- A
guardSub A A' B B'
G |- subtype (guard A B) (guard A' B')
>>
G |- arrow A' A
G |- istp A
G, A' |- subtype B[^1] B'[^1]
G, A |- istp B[^1]
guardSubIntro A B C
G |- subtype C (guard A B)
>>
G |- istp A
G, A |- subtype C[^1] B[^1]
G |- istp C
existsForm A B
G |- istp (exists A (fn . B))
>>
G |- istp A
G, A |- istp B
existsEq A A' B B'
G |- eqtp (exists A (fn . B)) (exists A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B B'
existsFormUniv A B I
G |- of (univ I) (exists A (fn . B))
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B
existsEqUniv A A' B B' I
G |- eq (univ I) (exists A (fn . B)) (exists A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B B'
existsSub A A' B B'
G |- subtype (exists A (fn . B)) (exists A' (fn . B'))
>>
G |- subtype A A'
G, A |- subtype B B'
G, A' |- istp B'
existsIntroOf A B M N
G |- of (exists A (fn . B)) (M , N)
>>
G, A |- istp B
G |- of A M
G |- of B[M . id] N
existsIntroEq A B M M' N N'
G |- eq (exists A (fn . B)) (M , N) (M' , N')
>>
G, A |- istp B
G |- eq A M M'
G |- eq B[M . id] N N'
existsIntro A B M
G |- exists A (fn . B) ext (M , N)
>>
G, A |- istp B
G |- of A M
G |- B[M . id] ext N
existsElim1Of A B M
G |- of A (M #1)
>>
G |- of (exists A (fn . B)) M
existsElim1Eq A B M N
G |- eq A (M #1) (N #1)
>>
G |- eq (exists A (fn . B)) M N
existsElim1 A B
G |- A ext M #1
>>
G |- exists A (fn . B) ext M
existsElim2Of A B M
G |- of B[M #1 . id] (M #2)
>>
G |- of (exists A (fn . B)) M
existsElim2Eq A B M N
G |- eq B[M #1 . id] (M #2) (N #2)
>>
G |- eq (exists A (fn . B)) M N
existsEta A B M
G |- eq (exists A (fn . B)) M (M #1 , M #2)
>>
G |- of (exists A (fn . B)) M
existsExt A B M N
G |- eq (exists A (fn . B)) M N
>>
G |- of (exists A (fn . B)) M
G |- of (exists A (fn . B)) N
G |- eq A (M #1) (N #1)
G |- eq B[M #1 . id] (M #2) (N #2)
existsLeft n A B C
G1, (exists A (fn . B)), G2 |- C ext M[under_n (0 #2 . 0 #1 . ^1)]
>>
G1, A, B, G2[(1 , 0) . ^2] |- C[under_n ((1 , 0) . ^2)] ext M
existsFormInv1 A B
G |- istp A
>>
G |- istp (exists A (fn . B))
existsFormInv2 A B M
G |- istp B[M . id]
>>
G |- istp (exists A (fn . B))
G |- of A M
existsFormInv2Eq A B M N
G |- eqtp B[M . id] B[N . id]
>>
G |- istp (exists A (fn . B))
G |- eq A M N
prodKind I K L
G |- of (kind I) (prod K L)
>>
G |- of (kind I) K
G |- of (kind I) L
prodKindEq I K K' L L'
G |- eq (kind I) (prod K L) (prod K' L')
>>
G |- eq (kind I) K K'
G |- eq (kind I) L L'
prodForm A B
G |- istp (prod A B)
>>
G |- istp A
G |- istp B
prodEq A A' B B'
G |- eqtp (prod A B) (prod A' B')
>>
G |- eqtp A A'
G |- eqtp B B'
prodFormUniv A B I
G |- of (univ I) (prod A B)
>>
G |- of (univ I) A
G |- of (univ I) B
prodEqUniv A A' B B' I
G |- eq (univ I) (prod A B) (prod A' B')
>>
G |- eq (univ I) A A'
G |- eq (univ I) B B'
prodExistsEq A A' B B'
G |- eqtp (prod A B) (exists A' (fn . B'[^1]))
>>
G |- eqtp A A'
G |- eqtp B B'
prodExistsEqUniv A A' B B' I
G |- eq (univ I) (prod A B) (exists A' (fn . B'[^1]))
>>
G |- eq (univ I) A A'
G |- eq (univ I) B B'
prodSub A A' B B'
G |- subtype (prod A B) (prod A' B')
>>
G |- subtype A A'
G |- subtype B B'
prodExistsSub A A' B B'
G |- subtype (prod A B) (exists A' (fn . B'))
>>
G |- subtype A A'
G, A |- subtype B[^1] B'
G |- istp B
G, A' |- istp B'
existsProdSub A A' B B'
G |- subtype (exists A (fn . B)) (prod A' B')
>>
G |- subtype A A'
G, A |- subtype B B'[^1]
G |- istp B'
prodIntroOf A B M N
G |- of (prod A B) (M , N)
>>
G |- of A M
G |- of B N
prodIntroEq A B M M' N N'
G |- eq (prod A B) (M , N) (M' , N')
>>
G |- eq A M M'
G |- eq B N N'
prodIntro A B
G |- prod A B ext (M , N)
>>
G |- A ext M
G |- B ext N
prodElim1Of A B M
G |- of A (M #1)
>>
G |- of (prod A B) M
prodElim1Eq A B M N
G |- eq A (M #1) (N #1)
>>
G |- eq (prod A B) M N
prodElim1 A B
G |- A ext M #1
>>
G |- prod A B ext M
prodElim2Of A B M
G |- of B (M #2)
>>
G |- of (prod A B) M
prodElim2Eq A B M N
G |- eq B (M #2) (N #2)
>>
G |- eq (prod A B) M N
prodElim2 A B
G |- B ext M #2
>>
G |- prod A B ext M
prodEta A B M
G |- eq (prod A B) M (M #1 , M #2)
>>
G |- of (prod A B) M
prodExt A B M N
G |- eq (prod A B) M N
>>
G |- of (prod A B) M
G |- of (prod A B) N
G |- eq A (M #1) (N #1)
G |- eq B (M #2) (N #2)
prodLeft n A B C
G1, (prod A B), G2 |- C ext M[under_n (0 #2 . 0 #1 . ^1)]
>>
G1, A, B[^1], G2[(1 , 0) . ^2] |- C[under_n ((1 , 0) . ^2)] ext M
prodFormInv1 A B
G |- istp A
>>
G |- istp (prod A B)
prodFormInv2 A B
G |- istp B
>>
G |- istp (prod A B)
G |- A
dprodForm A B
G |- istp (dprod A B)
>>
G |- istp A
G, A |- istp B[^1]
dprodEq A A' B B'
G |- eqtp (dprod A B) (dprod A' B')
>>
G |- eqtp A A'
G, A |- eqtp B[^1] B'[^1]
dprodFormUniv A B I
G |- of (univ I) (dprod A B)
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B[^1]
dprodEqUniv A A' B B' I
G |- eq (univ I) (dprod A B) (dprod A' B')
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B[^1] B'[^1]
dprodExistsEq A A' B B'
G |- eqtp (dprod A B) (exists A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B[^1] B'
dprodExistsEqUniv A A' B B' I
G |- eq (univ I) (dprod A B) (exists A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B[^1] B'
prodDprodEq A A' B B'
G |- eqtp (prod A B) (dprod A' B')
>>
G |- eqtp A A'
G |- eqtp B B'
prodDprodEqUniv A A' B B' I
G |- eq (univ I) (prod A B) (dprod A' B')
>>
G |- eq (univ I) A A'
G |- eq (univ I) B B'
dprodSub A A' B B'
G |- subtype (dprod A B) (dprod A' B')
>>
G |- subtype A A'
G, A |- subtype B[^1] B'[^1]
G, A' |- istp B'[^1]
dprodExistsSub A A' B B'
G |- subtype (dprod A B) (exists A' (fn . B'))
>>
G |- subtype A A'
G, A |- subtype B[^1] B'
G, A' |- istp B'
existsDprodSub A A' B B'
G |- subtype (exists A (fn . B)) (dprod A' B')
>>
G |- subtype A A'
G, A |- subtype B B'[^1]
G, A' |- istp B'[^1]
dprodProdSub A A' B B'
G |- subtype (dprod A B) (prod A' B')
>>
G |- subtype A A'
G, A |- subtype B[^1] B'[^1]
G |- istp B'
prodDprodSub A A' B B'
G |- subtype (prod A B) (dprod A' B')
>>
G |- subtype A A'
G, A |- subtype B[^1] B'[^1]
G |- istp B
G, A' |- istp B'[^1]
dprodIntroOf A B M N
G |- of (dprod A B) (M , N)
>>
G |- of A M
G |- of B N
dprodIntroEq A B M M' N N'
G |- eq (dprod A B) (M , N) (M' , N')
>>
G |- eq A M M'
G |- eq B N N'
dprodIntro A B
G |- dprod A B ext (M , N)
>>
G |- A ext M
G |- B ext N
dprodElim1Of A B M
G |- of A (M #1)
>>
G |- of (dprod A B) M
dprodElim1Eq A B M N
G |- eq A (M #1) (N #1)
>>
G |- eq (dprod A B) M N
dprodElim1 A B
G |- A ext M #1
>>
G |- dprod A B ext M
dprodElim2Of A B M
G |- of B (M #2)
>>
G |- of (dprod A B) M
dprodElim2Eq A B M N
G |- eq B (M #2) (N #2)
>>
G |- eq (dprod A B) M N
dprodElim2 A B
G |- B ext M #2
>>
G |- dprod A B ext M
dprodEta A B M
G |- eq (dprod A B) M (M #1 , M #2)
>>
G |- of (dprod A B) M
dprodExt A B M N
G |- eq (dprod A B) M N
>>
G |- of (dprod A B) M
G |- of (dprod A B) N
G |- eq A (M #1) (N #1)
G |- eq B (M #2) (N #2)
dprodLeft n A B C
G1, (dprod A B), G2 |- C ext M[under_n (0 #2 . 0 #1 . ^1)]
>>
G1, A, B[^1], G2[(1 , 0) . ^2] |- C[under_n ((1 , 0) . ^2)] ext M
dprodFormInv1 A B
G |- istp A
>>
G |- istp (dprod A B)
dprodFormInv2 A B M
G |- istp B
>>
G |- istp (dprod A B)
G |- of A M
unionForm A B
G |- istp (union A (fn . B))
>>
G |- istp A
G, A |- istp B
unionEq A A' B B'
G |- eqtp (union A (fn . B)) (union A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B B'
unionFormUniv A B I
G |- of (univ I) (union A (fn . B))
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B
unionEqUniv A A' B B' I
G |- eq (univ I) (union A (fn . B)) (union A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B B'
unionSub A A' B B'
G |- subtype (union A (fn . B)) (union A' (fn . B'))
>>
G |- subtype A A'
G, A |- subtype B B'
G, A' |- istp B'
unionIntroOf A B M N
G |- of (union A (fn . B)) N
>>
G, A |- istp B
G |- of A M
G |- of B[M . id] N
unionIntroEq A B M N N'
G |- eq (union A (fn . B)) N N'
>>
G, A |- istp B
G |- of A M
G |- eq B[M . id] N N'
unionIntro A B M
G |- union A (fn . B) ext N
>>
G, A |- istp B
G |- of A M
G |- B[M . id] ext N
unionElimOf A B C M P
G |- of C P[M . id]
>>
G, A, B |- of C[^2] P[0 . ^2]
G |- of (union A (fn . B)) M
unionElimEq A B C M N P Q
G |- eq C P[M . id] Q[N . id]
>>
G, A, B |- eq C[^2] P[0 . ^2] Q[0 . ^2]
G |- eq (union A (fn . B)) M N
unionElim A B C M
G |- C ext P[M . () . id]
>>
G, (hidden) A, B |- C[^2] ext P
G |- of (union A (fn . B)) M
unionElimOfDep A B C M P
G |- of C[M . id] P[M . id]
>>
G, A, B |- of C[0 . ^2] P[0 . ^2]
G |- of (union A (fn . B)) M
unionElimEqDep A B C M N P Q
G |- eq C[M . id] P[M . id] Q[N . id]
>>
G, A, B |- eq C[0 . ^2] P[0 . ^2] Q[0 . ^2]
G |- eq (union A (fn . B)) M N
unionElimDep A B C M
G |- C[M . id] ext P[M . () . id]
>>
G, (hidden) A, B |- C[0 . ^2] ext P
G |- of (union A (fn . B)) M
unionElimIstype A B C M
G |- istp C[M . id]
>>
G, A, B |- istp C[0 . ^2]
G |- of (union A (fn . B)) M
unionElimEqtype A B C D M N
G |- eqtp C[M . id] D[N . id]
>>
G, A, B |- eqtp C[0 . ^2] D[0 . ^2]
G |- eq (union A (fn . B)) M N
coguardForm A B
G |- istp (coguard A B)
>>
G |- istp A
G, A |- istp B[^1]
coguardEq A A' B B'
G |- eqtp (coguard A B) (coguard A' B')
>>
G |- iff A A'
G, A |- eqtp B[^1] B'[^1]
coguardFormUniv A B I
G |- of (univ I) (coguard A B)
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B[^1]
coguardEqUniv A A' B B' I
G |- eq (univ I) (coguard A B) (coguard A' B')
>>
G |- of (univ I) A
G |- of (univ I) A'
G |- iff A A'
G, A |- eq (univ I[^1]) B[^1] B'[^1]
coguardIntroEq A B M N
G |- eq (coguard A B) M N
>>
G |- A
G |- eq B M N
coguardIntroOf A B M
G |- of (coguard A B) M
>>
G |- A
G |- of B M
coguardIntroOfSquash A B M
G |- of (coguard A B) M
>>
G |- istp A
G |- squash A
G |- of B M
coguardIntro A B
G |- coguard A B ext M
>>
G |- A
G |- B ext M
coguardElim1 A B
G |- squash A
>>
G |- istp A
G |- coguard A B
coguardElim2Eq A B M N
G |- eq B M N
>>
G |- eq (coguard A B) M N
coguardElim2Of A B M
G |- of B M
>>
G |- of (coguard A B) M
coguardElim2 A B
G |- B ext M
>>
G |- coguard A B ext M
coguardLeft n A B C
G1, (coguard A B), G2 |- C ext M[under_n (() . id)]
>>
G1 |- istp A
G1, B, (hidden) A[^1], G2[^1] |- C[under_n (^1)] ext M
coguardSatEq A B
G |- eqtp B (coguard A B)
>>
G |- istp B
G |- A
coguardSub A A' B B'
G |- subtype (coguard A B) (coguard A' B')
>>
G |- arrow A A'
G |- istp A'
G, A |- subtype B[^1] B'[^1]
G, A' |- istp B'[^1]
coguardSubElim A B C
G |- subtype (coguard A B) C
>>
G |- istp A
G, A |- subtype B[^1] C[^1]
G |- istp C
sumForm A B
G |- istp (sum A B)
>>
G |- istp A
G |- istp B
sumEq A A' B B'
G |- eqtp (sum A B) (sum A' B')
>>
G |- eqtp A A'
G |- eqtp B B'
sumFormUniv A B I
G |- of (univ I) (sum A B)
>>
G |- of (univ I) A
G |- of (univ I) B
sumEqUniv A A' B B' I
G |- eq (univ I) (sum A B) (sum A' B')
>>
G |- eq (univ I) A A'
G |- eq (univ I) B B'
sumSub A A' B B'
G |- subtype (sum A B) (sum A' B')
>>
G |- subtype A A'
G |- subtype B B'
sumIntro1Of A B M
G |- of (sum A B) (inl M)
>>
G |- istp B
G |- of A M
sumIntro1Eq A B M N
G |- eq (sum A B) (inl M) (inl N)
>>
G |- istp B
G |- eq A M N
sumIntro1 A B
G |- sum A B ext inl M
>>
G |- istp B
G |- A ext M
sumIntro2Of A B M
G |- of (sum A B) (inr M)
>>
G |- istp A
G |- of B M
sumIntro2Eq A B M N
G |- eq (sum A B) (inr M) (inr N)
>>
G |- istp A
G |- eq B M N
sumIntro2 A B
G |- sum A B ext inr M
>>
G |- istp A
G |- B ext M
sumElimOf A B C M P R
G |- of C[M . id] (sum_case M (fn . P) (fn . R))
>>
G |- of (sum A B) M
G, A |- of C[inl 0 . ^1] P
G, B |- of C[inr 0 . ^1] R
sumElimOfNondep A B C M P R
G |- of C (sum_case M (fn . P) (fn . R))
>>
G |- of (sum A B) M
G, A |- of C[^1] P
G, B |- of C[^1] R
sumElimEq A B C M N P Q R S
G |- eq C[M . id] (sum_case M (fn . P) (fn . R)) (sum_case N (fn . Q) (fn . S))
>>
G |- eq (sum A B) M N
G, A |- eq C[inl 0 . ^1] P Q
G, B |- eq C[inr 0 . ^1] R S
sumElim A B C M
G |- C[M . id] ext sum_case M (fn . P) (fn . R)
>>
G |- of (sum A B) M
G, A |- C[inl 0 . ^1] ext P
G, B |- C[inr 0 . ^1] ext R
sumElimNondep A B C
G |- C ext sum_case M (fn . P) (fn . R)
>>
G |- sum A B ext M
G, A |- C[^1] ext P
G, B |- C[^1] ext R
sumElimIstype A B C E M
G |- istp (sum_case M (fn . C) (fn . E))
>>
G |- of (sum A B) M
G, A |- istp C
G, B |- istp E
sumElimEqtype A B C D E F M N
G |- eqtp (sum_case M (fn . C) (fn . E)) (sum_case N (fn . D) (fn . F))
>>
G |- eq (sum A B) M N
G, A |- eqtp C D
G, B |- eqtp E F
sumLeft n A B C
G1, (sum A B), G2 |- C ext sum_case n (fn . M[1 .. n . 0 . ^n+1]) (fn . N[1 .. n . 0 . ^n+1])
>>
G1, A, G2[inl 0 . ^1] |- C[under_n (inl 0 . ^1)] ext M
G1, B, G2[inr 0 . ^1] |- C[under_n (inr 0 . ^1)] ext N
sumContradiction A B C M N
G |- C
>>
G |- eq (sum A B) (inl M) (inr N)
sumInjection1 A B M N
G |- eq A M N
>>
G |- eq (sum A B) (inl M) (inl N)
sumInjection2 A B M N
G |- eq B M N
>>
G |- eq (sum A B) (inr M) (inr N)
sum_caseType
G |- of (intersect level (fn . intersect (univ 0) (fn . intersect (univ 1) (fn . intersect (univ 2) (fn . arrow (sum 2 1) (arrow (arrow 2 0) (arrow (arrow 1 0) 0))))))) sum_case
sumFormInv1 A B
G |- istp A
>>
G |- istp (sum A B)
sumFormInv2 A B
G |- istp B
>>
G |- istp (sum A B)
futureKind I K
G |- of (kind I) (future K)
>>
G |- of level I
promote(G) |- of (kind I) K
futureKindEq I K L
G |- eq (kind I) (future K) (future L)
>>
G |- of level I
promote(G) |- eq (kind I) K L
futureForm A
G |- istp (future A)
>>
promote(G) |- istp A
futureEq A B
G |- eqtp (future A) (future B)
>>
promote(G) |- eqtp A B
futureFormUniv A I
G |- of (univ I) (future A)
>>
G |- of level I
promote(G) |- of (univ I) A
futureEqUniv A B I
G |- eq (univ I) (future A) (future B)
>>
G |- of level I
promote(G) |- eq (univ I) A B
futureSub A B
G |- subtype (future A) (future B)
>>
promote(G) |- subtype A B
futureIntroOf A M
G |- of (future A) (next M)
>>
promote(G) |- of A M
futureIntroEq A M N
G |- eq (future A) (next M) (next N)
>>
promote(G) |- eq A M N
futureIntro A
G |- future A ext next M
>>
promote(G) |- A ext M
futureElimOf A B M P
G |- of B[M #prev . id] P[M #prev . id]
>>
promote(G) |- istp A
G |- of (future A) M
G, (later) A |- of B P
futureElimOfLetnext A B M P
G |- of B[M #prev . id] (letnext M (fn . P))
>>
promote(G) |- istp A
G |- of (future A) M
G, (later) A |- of B P
futureElimOfLetnextNondep A B M P
G |- of B (letnext M (fn . P))
>>
promote(G) |- istp A
G |- of (future A) M
G, (later) A |- of B[^1] P
futureElimEq A B M N P Q
G |- eq B[M #prev . id] P[M #prev . id] Q[N #prev . id]
>>
promote(G) |- istp A
G |- eq (future A) M N
G, (later) A |- eq B P Q
futureElim A B M
G |- B[M #prev . id] ext P[M #prev . id]
>>
promote(G) |- istp A
G |- of (future A) M
G, (later) A |- B ext P
futureElimIstype A B M
G |- istp B[M #prev . id]
>>
promote(G) |- istp A
G |- of (future A) M
G, (later) A |- istp B
futureElimIstypeLetnext A B M
G |- istp (letnext M (fn . B))
>>
promote(G) |- istp A
G |- of (future A) M
G, (later) A |- istp B
futureElimEqtype A B C M N
G |- eqtp B[M #prev . id] C[N #prev . id]
>>
promote(G) |- istp A
G |- eq (future A) M N
G, (later) A |- eqtp B C
futureEta A M
G |- eq (future A) M (next (M #prev))
>>
G |- of (future A) M
futureExt A M N
G |- eq (future A) M N
>>
G |- of (future A) M
G |- of (future A) N
promote(G) |- eq A (M #prev) (N #prev)
futureLeft n A B
G1, (future A), G2 |- B ext M[under_n (0 #prev . ^1)]
>>
promote(G1) |- istp A
G1, (later) A, G2[next 0 . ^1] |- B[under_n (next 0 . ^1)] ext M
futureInjection A M N
G |- future (eq A M N) ext next ()
>>
promote(G) |- istp A
G |- eq (future A) (next M) (next N)
recKind I K
G |- of (kind I) (rec (fn . K))
>>
G |- of level I
G, (later) (kind I) |- of (kind I[^1]) K
recKindEq I K L
G |- eq (kind I) (rec (fn . K)) (rec (fn . L))
>>
G |- of level I
G, (later) (kind I) |- eq (kind I[^1]) K L
recForm A
G |- istp (rec (fn . A))
>>
G, (later) type |- istp A
recEq A B
G |- eqtp (rec (fn . A)) (rec (fn . B))
>>
G, (later) type |- eqtp A B
recFormUniv A I
G |- of (univ I) (rec (fn . A))
>>
G |- of level I
G, (later) (univ I) |- of (univ I[^1]) A
recEqUniv A B I
G |- eq (univ I) (rec (fn . A)) (rec (fn . B))
>>
G |- of level I
G, (later) (univ I) |- eq (univ I[^1]) A B
recUnroll A
G |- eqtp (rec (fn . A)) A[rec (fn . A) . id]
>>
G, (later) type |- istp A
recUnrollUniv A I
G |- eq (univ I) (rec (fn . A)) A[rec (fn . A) . id]
>>
G |- of level I
G, (later) (univ I) |- of (univ I[^1]) A
recBisimilar A B
G |- eqtp B (rec (fn . A))
>>
G, (later) type |- istp A
G |- eqtp B A[B . id]
muForm A
G |- istp (mu (fn . A))
>>
G, type |- istp A
G |- positive (fn . A)
muEq A B
G |- eqtp (mu (fn . A)) (mu (fn . B))
>>
G, type |- eqtp A B
G |- positive (fn . A)
G |- positive (fn . B)
muFormUniv A I
G |- of (univ I) (mu (fn . A))
>>
G |- of level I
G, (univ I) |- of (univ I[^1]) A
G |- positive (fn . A)
muEqUniv A B I
G |- eq (univ I) (mu (fn . A)) (mu (fn . B))
>>
G |- of level I
G, (univ I) |- eq (univ I[^1]) A B
G |- positive (fn . A)
G |- positive (fn . B)
muUnroll A
G |- eeqtp (mu (fn . A)) A[mu (fn . A) . id] ext (() , ())
>>
G, type |- istp A
G |- positive (fn . A)
muUnrollUniv A I
G |- eeqtp (mu (fn . A)) A[mu (fn . A) . id] ext (() , ())
>>
G |- of level I
G, (univ I) |- of (univ I[^1]) A
G |- positive (fn . A)
muInd A B M
G |- B[M . id] ext fix (fn . fn . N[1 . () . 0 . () . ^2]) M
>>
G, type |- istp A
G |- positive (fn . A)
G, (hidden) type, A, (subtype 1 (mu (fn . A[0 . ^3]))), (forall 2 (fn . B[0 . ^4])) |- B[2 . ^4] ext N
G |- of (mu (fn . A)) M
muIndUniv A B I M
G |- B[M . id] ext fix (fn . fn . N[1 . () . 0 . () . ^2] #1) M
>>
G |- of level I
G, (univ I) |- of (univ I[^1]) A
G |- positive (fn . A)
G, (hidden) (univ I), A, (subtype 1 (mu (fn . A[0 . ^3]))), (forall 2 (fn . B[0 . ^4])) |- prod B[2 . ^4] (of (univ I[^4]) B[2 . ^4]) ext N
G |- of (mu (fn . A)) M
checkPositive
Proves valid goals of the form:
G |- positive (fn . A)
checkNegative
Proves valid goals of the form:
G |- negative (fn . A)
voidForm
G |- istp void
voidEq
G |- eqtp void void
voidFormUniv I
G |- of (univ I) void
>>
G |- of level I
voidEqUniv I
G |- eq (univ I) void void
>>
G |- of level I
voidElim A
G |- A
>>
G |- void
voidSub A
G |- subtype void A
>>
G |- istp A
abortType
G |- of (intersect level (fn . intersect (univ 0) (fn . arrow void 0))) abort
unitKind I
G |- of (kind I) unit
>>
G |- of level I
unitKindEq I
G |- eq (kind I) unit unit
>>
G |- of level I
unitForm
G |- istp unit
unitEq
G |- eqtp unit unit
unitFormUniv I
G |- of (univ I) unit
>>
G |- of level I
unitEqUniv I
G |- eq (univ I) unit unit
>>
G |- of level I
unitIntroOf
G |- of unit ()
unitIntro
G |- unit
unitExt M N
G |- eq unit M N
>>
G |- of unit M
G |- of unit N
unitLeft n B
G1, unit, G2 |- B ext M[under_n (^1)]
>>
G1, G2[() . id] |- B[under_n (() . id)] ext M
boolForm
G |- istp bool
boolEq
G |- eqtp bool bool
boolFormUniv I
G |- of (univ I) bool
>>
G |- of level I
boolEqUniv I
G |- eq (univ I) bool bool
>>
G |- of level I
boolIntro1Of
G |- of bool true
boolIntro2Of
G |- of bool false
boolElimOf A M P R
G |- of A[M . id] (ite M P R)
>>
G |- of bool M
G |- of A[true . id] P
G |- of A[false . id] R
boolElimOfNondep A M P R
G |- of A (ite M P R)
>>
G |- of bool M
G |- of A P
G |- of A R
boolElimEq A M N P Q R S
G |- eq A[M . id] (ite M P R) (ite N Q S)
>>
G |- eq bool M N
G |- eq A[true . id] P Q
G |- eq A[false . id] R S
boolElim A M
G |- A[M . id] ext ite M P R
>>
G |- of bool M
G |- A[true . id] ext P
G |- A[false . id] ext R
boolElimIstype A C M
G |- istp (ite M A C)
>>
G |- of bool M
G |- istp A
G |- istp C
boolElimEqtype A B C D M N
G |- eqtp (ite M A C) (ite N B D)
>>
G |- eq bool M N
G |- eqtp A B
G |- eqtp C D
boolLeft n A
G1, bool, G2 |- A ext ite 0+n M[under_n (^1)] N[under_n (^1)]
>>
G1, G2[true . id] |- A[under_n (true . id)] ext M
G1, G2[false . id] |- A[under_n (false . id)] ext N
boolContradiction A
G |- A
>>
G |- eq bool true false
iteType
G |- of (intersect level (fn . intersect (univ 0) (fn . arrow bool (arrow 0 (arrow 0 0))))) ite
natForm
G |- istp nat
natEq
G |- eqtp nat nat
natFormUniv I
G |- of (univ I) nat
>>
G |- of level I
natEqUniv I
G |- eq (univ I) nat nat
>>
G |- of level I
natElimEq A M N P Q R S
G |- eq A[M . id] (natcase M P (fn . R)) (natcase N Q (fn . S))
>>
G |- eq nat M N
G |- eq A[zero . id] P Q
G, nat |- eq A[succ 0 . ^1] R S
natElimEqtype A B C D M N
G |- eqtp (natcase M A (fn . C)) (natcase N B (fn . D))
>>
G |- eq nat M N
G |- eqtp A B
G, nat |- eqtp C D
natUnroll
G |- eeqtp nat (sum unit nat) ext (() , ())
natContradiction A M
G |- A
>>
G |- eq nat zero (succ M)
natInjection M N
G |- eq nat M N
>>
G |- eq nat (succ M) (succ N)
zeroType
G |- of nat zero
succType
G |- of (arrow nat nat) succ
univKind I J
G |- of (kind I) (univ J)
>>
G |- eq level J I
univKindEq I J K
G |- eq (kind I) (univ J) (univ K)
>>
G |- eq level J K
G |- eq level J I
univForm I
G |- istp (univ I)
>>
G |- of level I
univEq I J
G |- eqtp (univ I) (univ J)
>>
G |- eq level I J
univFormUniv I J
G |- of (univ I) (univ J)
>>
G |- lleq (lsucc J) I
univFormUnivSucc I
G |- of (univ (lsucc I)) (univ I)
>>
G |- of level I
univEqUniv I J K
G |- eq (univ I) (univ J) (univ K)
>>
G |- eq level J K
G |- lleq (lsucc J) I
univCumulativeOf A I J
G |- of (univ J) A
>>
G |- of (univ I) A
G |- lleq I J
univCumulativeEq A B I J
G |- eq (univ J) A B
>>
G |- eq (univ I) A B
G |- lleq I J
univCumulativeSuccOf A I
G |- of (univ (lsucc I)) A
>>
G |- of (univ I) A
univSub I J
G |- subtype (univ I) (univ J)
>>
G |- lleq I J
univForgetOf A I
G |- istp A
>>
G |- of (univ I) A
univForgetEq A B I
G |- eqtp A B
>>
G |- eq (univ I) A B
univIntroEqtype A B I
G |- eq (univ I) A B
>>
G |- eqtp A B
G |- of (univ I) A
G |- of (univ I) B
univFormInv I
G |- of level I
>>
G |- istp (univ I)
kindForm I
G |- istp (kind I)
>>
G |- of level I
kindEq I J
G |- eqtp (kind I) (kind J)
>>
G |- eq level I J
kindFormUniv I K
G |- of (univ K) (kind I)
>>
G |- lleq (lsucc (lsucc I)) K
kindEqUniv I J K
G |- eq (univ K) (kind I) (kind J)
>>
G |- eq level I J
G |- lleq (lsucc (lsucc I)) K
kindForgetOf A I
G |- of (univ (lsucc I)) A
>>
G |- of (kind I) A
kindForgetEq A B I
G |- eq (univ (lsucc I)) A B
>>
G |- eq (kind I) A B
kindUnivSub I J
G |- subtype (kind I) (univ J)
>>
G |- lleq (lsucc I) J
levelForm
G |- istp level
levelEq
G |- eqtp level level
levelFormUniv I
G |- of (univ I) level
>>
G |- of level I
levelEqUniv I
G |- eq (univ I) level level
>>
G |- of level I
lleqForm I J
G |- istp (lleq I J)
>>
G |- of level I
G |- of level J
lleqEq I I' J J'
G |- eqtp (lleq I J) (lleq I' J')
>>
G |- eq level I I'
G |- eq level J J'
lleqFormUniv I J K
G |- of (univ K) (lleq I J)
>>
G |- of level I
G |- of level J
G |- of level K
lleqEqUniv I I' J J' K
G |- eq (univ K) (lleq I J) (lleq I' J')
>>
G |- eq level I I'
G |- eq level J J'
G |- of level K
lzeroLevel
G |- of level lzero
lsuccLevel M
G |- of level (lsucc M)
>>
G |- of level M
lsuccEq M N
G |- eq level (lsucc M) (lsucc N)
>>
G |- eq level M N
lmaxLevel M N
G |- of level (lmax M N)
>>
G |- of level M
G |- of level N
lmaxEq M M' N N'
G |- eq level (lmax M N) (lmax M' N')
>>
G |- eq level M M'
G |- eq level N N'
lleqRefl M
G |- lleq M M
>>
G |- of level M
lleqTrans M N P
G |- lleq M P
>>
G |- lleq M N
G |- lleq N P
lleqZero M
G |- lleq lzero M
>>
G |- of level M
lleqSucc M N
G |- lleq (lsucc M) (lsucc N)
>>
G |- lleq M N
lleqIncrease M N
G |- lleq M (lsucc N)
>>
G |- lleq M N
lleqMaxL M N P
G |- lleq (lmax M N) P
>>
G |- lleq M P
G |- lleq N P
lleqMaxR1 M N P
G |- lleq M (lmax N P)
>>
G |- lleq M N
G |- of level P
lleqMaxR2 M N P
G |- lleq M (lmax N P)
>>
G |- lleq M P
G |- of level N
lleqResp M M' N N'
G |- lleq M N
>>
G |- eq level M' M
G |- eq level N' N
G |- lleq M' N'
lsuccMaxDistTrans M N P
G |- eq level M (lsucc (lmax N P))
>>
G |- eq level M (lmax (lsucc N) (lsucc P))
lzeroType
G |- of level lzero
lsuccType
G |- of (arrow level level) lsucc
lmaxType
G |- of (arrow level (arrow level level)) lmax
eqForm A M P
G |- istp (eq A M P)
>>
G |- of A M
G |- of A P
eqEq A B M N P Q
G |- eqtp (eq A M P) (eq B N Q)
>>
G |- eqtp A B
G |- eq A M N
G |- eq A P Q
eqFormUniv A I M P
G |- of (univ I) (eq A M P)
>>
G |- of (univ I) A
G |- of A M
G |- of A P
eqEqUniv A B I M N P Q
G |- eq (univ I) (eq A M P) (eq B N Q)
>>
G |- eq (univ I) A B
G |- eq A M N
G |- eq A P Q
eqIntro A M N
G |- of (eq A M N) ()
>>
G |- eq A M N
eqElim A M N P
G |- eq A M N
>>
G |- of (eq A M N) P
eqTrivialize A M N
G |- eq A M N
>>
G |- eq A M N
eqExt A M N P Q
G |- eq (eq A M N) P Q
>>
G |- of (eq A M N) P
G |- of (eq A M N) Q
eqLeft n A B P Q
G1, (eq A P Q), G2 |- B ext M[under_n (^1)]
>>
G1, G2[() . id] |- B[under_n (() . id)] ext M
eqRefl A M
G |- eq A M M
>>
G |- of A M
eqSymm A M N
G |- eq A M N
>>
G |- eq A N M
eqTrans A M N P
G |- eq A M P
>>
G |- eq A M N
G |- eq A N P
eqFormInv1 A M N
G |- istp A
>>
G |- istp (eq A M N)
eqFormInv2 A M N
G |- of A M
>>
G |- istp (eq A M N)
eqFormInv3 A M N
G |- of A N
>>
G |- istp (eq A M N)
ofForm A M
G |- istp (of A M)
>>
G |- of A M
ofEq A B M N
G |- eqtp (of A M) (of B N)
>>
G |- eqtp A B
G |- eq A M N
ofFormUniv A I M
G |- of (univ I) (of A M)
>>
G |- of (univ I) A
G |- of A M
ofEqUniv A B I M N
G |- eq (univ I) (of A M) (of B N)
>>
G |- eq (univ I) A B
G |- eq A M N
ofIntro A M
G |- of (of A M) ()
>>
G |- of A M
ofElim A M P
G |- of A M
>>
G |- of (of A M) P
ofTrivialize A M
G |- of A M
>>
G |- of A M
ofExt A M P Q
G |- eq (of A M) P Q
>>
G |- of (of A M) P
G |- of (of A M) Q
ofLeft n A B P
G1, (of A P), G2 |- B ext M[under_n (^1)]
>>
G1, G2[() . id] |- B[under_n (() . id)] ext M
ofEquand1 A M N
G |- of A M
>>
G |- eq A M N
ofEquand2 A M N
G |- of A N
>>
G |- eq A M N
eqtpForm A B
G |- istp (eqtp A B)
>>
G |- istp A
G |- istp B
eqtpEq A B C D
G |- eqtp (eqtp A C) (eqtp B D)
>>
G |- eqtp A B
G |- eqtp C D
eqtpFormUniv A B I
G |- of (univ I) (eqtp A B)
>>
G |- of (univ I) A
G |- of (univ I) B
eqtpEqUniv A B C D I
G |- eq (univ I) (eqtp A C) (eqtp B D)
>>
G |- eq (univ I) A B
G |- eq (univ I) C D
eqtpIntro A B
G |- of (eqtp A B) ()
>>
G |- eqtp A B
eqtpElim A B P
G |- eqtp A B
>>
G |- of (eqtp A B) P
eqtpExt A B P Q
G |- eq (eqtp A B) P Q
>>
G |- of (eqtp A B) P
G |- of (eqtp A B) Q
eqtpLeft n A B C
G1, (eqtp A B), G2 |- C ext M[under_n (^1)]
>>
G1, G2[() . id] |- C[under_n (() . id)] ext M
eqtpFunct A B M N
G |- eqtp B[M . id] B[N . id]
>>
G, A |- istp B
G |- eq A M N
eqtpFunctType A B B'
G |- eqtp A[B . id] A[B' . id]
>>
G, type |- istp A
G |- eqtp B B'
equivalenceOf A B M
G |- of B M
>>
G |- eqtp A B
G |- of A M
equivalenceEq A B M N
G |- eq B M N
>>
G |- eqtp A B
G |- eq A M N
equivalence A B
G |- B ext M
>>
G |- eqtp A B
G |- A ext M
equivalenceLeft n A B C
G1, A, G2 |- C ext M
>>
G1, (istp A) |- eqtp A[^1] B[^1]
G1, B, G2 |- C ext M
equivalenceLeftAlt n A B C
G1, A, G2 |- C ext M
>>
G1, A, G2 |- eqtp A[(^1) o ^n] B[(^1) o ^n]
G1, B, G2 |- C ext M
eqtpRefl A
G |- eqtp A A
>>
G |- istp A
eqtpSymm A B
G |- eqtp A B
>>
G |- eqtp B A
eqtpTrans A B C
G |- eqtp A C
>>
G |- eqtp A B
G |- eqtp B C
istpForm A
G |- istp (istp A)
>>
G |- istp A
istpEq A B
G |- eqtp (istp A) (istp B)
>>
G |- eqtp A B
istpFormUniv A I
G |- of (univ I) (istp A)
>>
G |- of (univ I) A
istpEqUniv A B I
G |- eq (univ I) (istp A) (istp B)
>>
G |- eq (univ I) A B
istpIntro A
G |- of (istp A) ()
>>
G |- istp A
istpElim A P
G |- istp A
>>
G |- of (istp A) P
istpExt A P Q
G |- eq (istp A) P Q
>>
G |- of (istp A) P
G |- of (istp A) Q
istpLeft n A B
G1, (istp A), G2 |- B ext M[under_n (^1)]
>>
G1, G2[() . id] |- B[under_n (() . id)] ext M
inhabitedForm A
G |- istp A
>>
G |- A
subtypeForm A B
G |- istp (subtype A B)
>>
G |- istp A
G |- istp B
subtypeEq A B C D
G |- eqtp (subtype A C) (subtype B D)
>>
G |- eqtp A B
G |- eqtp C D
subtypeFormUniv A B I
G |- of (univ I) (subtype A B)
>>
G |- of (univ I) A
G |- of (univ I) B
subtypeEqUniv A B C D I
G |- eq (univ I) (subtype A C) (subtype B D)
>>
G |- eq (univ I) A B
G |- eq (univ I) C D
subtypeIntro A B
G |- of (subtype A B) ()
>>
G |- subtype A B
subtypeElim A B P
G |- subtype A B
>>
G |- of (subtype A B) P
subtypeExt A B P Q
G |- eq (subtype A B) P Q
>>
G |- of (subtype A B) P
G |- of (subtype A B) Q
subtypeLeft n A B C
G1, (subtype A B), G2 |- C ext M[under_n (^1)]
>>
G1, G2[() . id] |- C[under_n (() . id)] ext M
subtypeEstablish A B
G |- subtype A B
>>
G |- istp A
G |- istp B
G, A |- of B[^1] 0
subsumptionOf A B M
G |- of B M
>>
G |- subtype A B
G |- of A M
subsumptionEq A B M N
G |- eq B M N
>>
G |- subtype A B
G |- eq A M N
subsumption A B
G |- B ext M
>>
G |- subtype A B
G |- A ext M
subsumptionAlt A B
G |- B ext M
>>
G |- eeqtp B A
G |- A ext M
subsumptionLeft n A B C
G1, A, G2 |- C ext M
>>
G1, (istp A) |- eeqtp A[^1] B[^1]
G1, B, G2 |- C ext M
subsumptionLeftAlt n A B C
G1, A, G2 |- C ext M
>>
G1, A, G2 |- eeqtp A[(^1) o ^n] B[(^1) o ^n]
G1, B, G2 |- C ext M
subsumptionLast n A B C
G1, A, G2 |- C[(id) o ^n] ext M[(id) o ^n]
>>
G1, A |- subtype A[^1] B[^1]
G1, B |- C ext M
subtypeRefl A
G |- subtype A A
>>
G |- istp A
subtypeReflEqtype A B
G |- subtype A B
>>
G |- eqtp A B
subtypeTrans A B C
G |- subtype A C
>>
G |- subtype A B
G |- subtype B C
subtypeIstp1 A B
G |- istp A
>>
G |- subtype A B
subtypeIstp2 A B
G |- istp B
>>
G |- subtype A B
eeqtpForm A B
G |- istp (eeqtp A B)
>>
G |- istp A
G |- istp B
eeqtpEq A B C D
G |- eqtp (eeqtp A C) (eeqtp B D)
>>
G |- eqtp A B
G |- eqtp C D
eeqtpFormUniv A B I
G |- of (univ I) (eeqtp A B)
>>
G |- of (univ I) A
G |- of (univ I) B
eeqtpEqUniv A B C D I
G |- eq (univ I) (eeqtp A C) (eeqtp B D)
>>
G |- eq (univ I) A B
G |- eq (univ I) C D
setForm A B
G |- istp (set A (fn . B))
>>
G |- istp A
G, A |- istp B
setEq A A' B B'
G |- eqtp (set A (fn . B)) (set A' (fn . B'))
>>
G |- eqtp A A'
G, A |- iff B B'
setFormUniv A B I
G |- of (univ I) (set A (fn . B))
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B
setEqUniv A A' B B' I
G |- eq (univ I) (set A (fn . B)) (set A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- of (univ I[^1]) B
G, A |- of (univ I[^1]) B'
G, A |- iff B B'
setWeakenOf A B M
G |- of A M
>>
G |- of (set A (fn . B)) M
setWeakenEq A B M N
G |- eq A M N
>>
G |- eq (set A (fn . B)) M N
setWeaken A B
G |- A ext M
>>
G |- set A (fn . B) ext M
setIntroOf A B M
G |- of (set A (fn . B)) M
>>
G, A |- istp B
G |- of A M
G |- B[M . id]
setIntroEq A B M N
G |- eq (set A (fn . B)) M N
>>
G, A |- istp B
G |- eq A M N
G |- B[M . id]
setIntro A B M
G |- set A (fn . B) ext M
>>
G, A |- istp B
G |- of A M
G |- B[M . id]
setIntroOfSquash A B M
G |- of (set A (fn . B)) M
>>
G, A |- istp B
G |- of A M
G |- squash B[M . id]
squashIntroOfSquash A
G |- of (squash A) ()
>>
G |- istp A
G |- squash A
setElim A B C M
G |- C ext N[() . id]
>>
G, A |- istp B
G |- of (set A (fn . B)) M
G, (hidden) B[M . id] |- C[^1] ext N
setLeft n A B C
G1, (set A (fn . B)), G2 |- C ext M[under_n (() . id)]
>>
G1, A |- istp B
G1, A, (hidden) B, G2[^1] |- C[under_n (^1)] ext M
setSquash A B
G |- eqtp (set A (fn . B)) (set A (fn . squash B))
>>
G |- istp (set A (fn . B))
setFormInv A B
G |- istp A
>>
G |- istp (set A (fn . B))
setSubElim A A' B
G |- subtype (set A (fn . B)) A'
>>
G |- subtype A A'
G, A |- istp B
isetForm A B
G |- istp (iset A (fn . B))
>>
G |- istp A
G, A |- istp B
isetEq A A' B B'
G |- eqtp (iset A (fn . B)) (iset A' (fn . B'))
>>
G |- eqtp A A'
G, A |- eqtp B B'
isetFormUniv A B I
G |- of (univ I) (iset A (fn . B))
>>
G |- of (univ I) A
G, A |- of (univ I[^1]) B
isetEqUniv A A' B B' I
G |- eq (univ I) (iset A (fn . B)) (iset A' (fn . B'))
>>
G |- eq (univ I) A A'
G, A |- eq (univ I[^1]) B B'
isetWeakenOf A B M
G |- of A M
>>
G |- of (iset A (fn . B)) M
isetWeakenEq A B M N
G |- eq A M N
>>
G |- eq (iset A (fn . B)) M N
isetWeaken A B
G |- A ext M
>>
G |- iset A (fn . B) ext M
isetIntroOf A B M
G |- of (iset A (fn . B)) M
>>
G, A |- istp B
G |- of A M
G |- B[M . id]
isetIntroEq A B M N
G |- eq (iset A (fn . B)) M N
>>
G, A |- istp B
G |- eq A M N
G |- B[M . id]
isetIntro A B M
G |- iset A (fn . B) ext M
>>
G, A |- istp B
G |- of A M
G |- B[M . id]
isetIntroOfSquash A B M
G |- of (iset A (fn . B)) M
>>
G, A |- istp B
G |- of A M
G |- squash B[M . id]
isetElim A B C M
G |- C ext N[() . id]
>>
G |- of (iset A (fn . B)) M
G, (hidden) B[M . id] |- C[^1] ext N
isetLeft n A B C
G1, (iset A (fn . B)), G2 |- C ext M[under_n (() . id)]
>>
G1, A, (hidden) B, G2[^1] |- C[under_n (^1)] ext M
isetFormInv1 A B
G |- istp A
>>
G |- istp (iset A (fn . B))
isetFormInv2 A B M
G |- istp B[M . id]
>>
G |- istp (iset A (fn . B))
G |- of A M
isetSubElim A A' B
G |- subtype (iset A (fn . B)) A'
>>
G |- subtype A A'
G, A |- istp B
squashForm A
G |- istp (squash A)
>>
G |- istp A
squashEq A B
G |- eqtp (squash A) (squash B)
>>
G |- iff A B
squashFormUniv A I
G |- of (univ I) (squash A)
>>
G |- of (univ I) A
squashEqUniv A B I
G |- eq (univ I) (squash A) (squash B)
>>
G |- of (univ I) A
G |- of (univ I) B
G |- iff A B
squashIntroOf A
G |- of (squash A) ()
>>
G |- A
squashIntro A
G |- squash A
>>
G |- A
squashElim A C M
G |- C ext N[() . id]
>>
G |- of (squash A) M
G |- istp A
G, (hidden) A |- C[^1] ext N
squashExt A M N
G |- eq (squash A) M N
>>
G |- of (squash A) M
G |- of (squash A) N
G |- istp A
squashLeft n A C
G1, (squash A), G2 |- C ext M[under_n (() . ^1)]
>>
G1 |- istp A
G1, (hidden) A, G2[() . ^1] |- C[under_n (() . ^1)] ext M
squashSub A B
G |- subtype (squash A) (squash B)
>>
G |- istp B
G |- arrow A B
isquashForm A
G |- istp (isquash A)
>>
G |- istp A
isquashEq A B
G |- eqtp (isquash A) (isquash B)
>>
G |- eqtp A B
isquashFormUniv A I
G |- of (univ I) (isquash A)
>>
G |- of (univ I) A
isquashEqUniv A B I
G |- eq (univ I) (isquash A) (isquash B)
>>
G |- of (univ I) A
G |- of (univ I) B
G |- eq (univ I) A B
isquashIntroOf A
G |- of (isquash A) ()
>>
G |- A
isquashIntro A
G |- isquash A
>>
G |- A
isquashIntroOfIsquash A
G |- of (isquash A) ()
>>
G |- isquash A
isquashElim A C M
G |- C ext N[() . id]
>>
G |- of (isquash A) M
G, (hidden) A |- C[^1] ext N
isquashExt A M N
G |- eq (isquash A) M N
>>
G |- of (isquash A) M
G |- of (isquash A) N
isquashLeft n A C
G1, (isquash A), G2 |- C ext M[under_n (() . ^1)]
>>
G1, (hidden) A, G2[() . ^1] |- C[under_n (() . ^1)] ext M
isquashSub A B
G |- subtype (isquash A) (isquash B)
>>
G |- istp B
G |- arrow A B
isquashFormInv A
G |- istp A
>>
G |- istp (isquash A)
quotientForm A B
G |- istp (quotient A (fn . fn . B))
>>
G |- istp A
G, A, A[^1] |- istp B
G, A, A[^1], B |- B[2 . 1 . ^3]
G, A, A[^1], A[^2], B[^1], B[1 . 2 . ^4] |- B[2 . ^4]
quotientEq A A' B B'
G |- eqtp (quotient A (fn . fn . B)) (quotient A' (fn . fn . B'))
>>
G |- eqtp A A'
G, A, A[^1] |- istp B
G, A, A[^1] |- istp B'
G, A, A[^1], B |- B'[^1]
G, A, A[^1], B' |- B[^1]
G, A, A[^1], B |- B[2 . 1 . ^3]
G, A, A[^1], A[^2], B[^1], B[1 . 2 . ^4] |- B[2 . ^4]
quotientFormUniv A B I
G |- of (univ I) (quotient A (fn . fn . B))
>>
G |- of (univ I) A
G, A, A[^1] |- of (univ I[^2]) B
G, A, A[^1], B |- B[2 . 1 . ^3]
G, A, A[^1], A[^2], B[^1], B[1 . 2 . ^4] |- B[2 . ^4]
quotientEqUniv A A' B B' I
G |- eq (univ I) (quotient A (fn . fn . B)) (quotient A' (fn . fn . B'))
>>
G |- eq (univ I) A A'
G, A, A[^1] |- of (univ I[^2]) B
G, A, A[^1] |- of (univ I[^2]) B'
G, A, A[^1], B |- B'[^1]
G, A, A[^1], B' |- B[^1]
G, A, A[^1], B |- B[2 . 1 . ^3]
G, A, A[^1], A[^2], B[^1], B[1 . 2 . ^4] |- B[2 . ^4]
quotientIntroOf A B M
G |- of (quotient A (fn . fn . B)) M
>>
G |- istp (quotient A (fn . fn . B))
G |- of A M
G |- B[M . M . id]
quotientIntroEq A B M N
G |- eq (quotient A (fn . fn . B)) M N
>>
G |- istp (quotient A (fn . fn . B))
G |- of A M
G |- of A N
G |- B[N . M . id]
quotientElimOf A B C M P
G |- of C[M . id] P[M . id]
>>
G |- of (quotient A (fn . fn . B)) M
G, A, A[^1] |- istp B
G, (quotient A (fn . fn . B)) |- istp C
G, A, A[^1], B |- eq C[^2] P[^2] P[1 . ^3]
quotientElimEq A B C M N P Q
G |- eq C[M . id] P[M . id] Q[N . id]
>>
G |- eq (quotient A (fn . fn . B)) M N
G, A, A[^1] |- istp B
G, (quotient A (fn . fn . B)) |- istp C
G, A, A[^1], B |- eq C[^2] P[^2] Q[1 . ^3]
quotientElimIstype A B C M
G |- istp C[M . id]
>>
G |- of (quotient A (fn . fn . B)) M
G, A, A[^1] |- istp B
G, A, A[^1], B |- eqtp C[^2] C[1 . ^3]
quotientElimEqtype A B C D M N
G |- eqtp C[M . id] D[N . id]
>>
G |- eq (quotient A (fn . fn . B)) M N
G, A, A[^1] |- istp B
G, A, A[^1], B |- eqtp C[^2] D[1 . ^3]
quotientDescent A B C M N
G |- C ext P[() . id]
>>
G, A, A[^1] |- istp B
G |- istp C
G |- of A M
G |- of A N
G |- eq (quotient A (fn . fn . B)) M N
G, (hidden) B[N . M . id] |- C[^1] ext P
quotientLeft n A B C
G1, (quotient A (fn . fn . B)), G2 |- C ext M[under_n (() . ^1)]
>>
G1, (quotient A (fn . fn . B)), G2 |- istp C
G1, (hidden) A, G2 |- C ext M
quotientLeftRefl n A B C
G1, (quotient A (fn . fn . B)), G2 |- C ext M[under_n (() . () . ^1)]
>>
G1, A, A[^1] |- istp B
G1, (quotient A (fn . fn . B)), G2 |- istp C
G1, (hidden) A, (hidden) B[0 . id], G2[^1] |- C[under_n (^1)] ext M
quotientLeftIstype n A B C
G1, (quotient A (fn . fn . B)), G2 |- istp C
>>
G1, A, A[^1] |- istp B
G1, A, A[^1], B, G2[^2] |- eqtp C[under_n (^2)] C[under_n (1 . ^3)]
quotientLeftEqtype n A B C D
G1, (quotient A (fn . fn . B)), G2 |- eqtp C D
>>
G1, A, A[^1] |- istp B
G1, A, A[^1], B, G2[^2] |- eqtp C[under_n (^2)] D[under_n (1 . ^3)]
quotientLeftOf n A B C M
G1, (quotient A (fn . fn . B)), G2 |- of C[under_n (^1)] M
>>
G1, A, A[^1] |- istp B
G1, A, A[^1], B, G2[^2] |- eq C[under_n (^3)] M[under_n (^2)] M[under_n (1 . ^3)]
quotientLeftEq n A B C M N
G1, (quotient A (fn . fn . B)), G2 |- eq C[under_n (^1)] M N
>>
G1, A, A[^1] |- istp B
G1, A, A[^1], B, G2[^2] |- eq C[under_n (^3)] M[under_n (^2)] N[under_n (1 . ^3)]
quotientLeftOfDep n A B C M
G1, (quotient A (fn . fn . B)), G2 |- of C M
>>
G1, A, A[^1] |- istp B
G1, A, A[^1], B, G2[^2] |- eqtp C[under_n (^2)] C[under_n (1 . ^3)]
G1, A, A[^1], B, G2[^2] |- eq C[under_n (^2)] M[under_n (^2)] M[under_n (1 . ^3)]
quotientLeftEqDep n A B C M N
G1, (quotient A (fn . fn . B)), G2 |- eq C M N
>>
G1, A, A[^1] |- istp B
G1, A, A[^1], B, G2[^2] |- eqtp C[under_n (^2)] C[under_n (1 . ^3)]
G1, A, A[^1], B, G2[^2] |- eq C[under_n (^2)] M[under_n (^2)] N[under_n (1 . ^3)]
quotientFormInv A B
G |- istp A
>>
G |- istp (quotient A (fn . fn . B))
iforallForm A I K
G |- istp (iforall I K (fn . A))
>>
G |- of (kind I) K
G, K |- istp A
iforallEq A B I K L
G |- eqtp (iforall I K (fn . A)) (iforall I L (fn . B))
>>
G |- eq (kind I) K L
G, K |- eqtp A B
iforallFormUniv A I J K
G |- of (univ J) (iforall I K (fn . A))
>>
G |- of (kind I) K
G |- lleq I J
G, K |- of (univ J[^1]) A
iforallEqUniv A B I J K L
G |- eq (univ J) (iforall I K (fn . A)) (iforall I L (fn . B))
>>
G |- eq (kind I) K L
G |- lleq I J
G, K |- eq (univ J[^1]) A B
iforallIntroOf A I K M
G |- of (iforall I K (fn . A)) M
>>
G |- of (kind I) K
G, K |- of A M[^1]
iforallIntroEq A I K M N
G |- eq (iforall I K (fn . A)) M N
>>
G |- of (kind I) K
G, K |- eq A M[^1] N[^1]
iforallIntro A I K
G |- iforall I K (fn . A) ext M[() . id]
>>
G |- of (kind I) K
G, (hidden) K |- A ext M
iforallElimOf A I K M P
G |- of A[P . id] M
>>
G, K |- istp A
G |- of (iforall I K (fn . A)) M
G |- of K P
iforallElimEq A I K M N P
G |- eq A[P . id] M N
>>
G, K |- istp A
G |- eq (iforall I K (fn . A)) M N
G |- of K P
iforallElim A I K P
G |- A[P . id] ext M
>>
G, K |- istp A
G |- iforall I K (fn . A) ext M
G |- of K P
foralltpForm A
G |- istp (foralltp (fn . A))
>>
G, type |- istp A
foralltpEq A B
G |- eqtp (foralltp (fn . A)) (foralltp (fn . B))
>>
G, type |- eqtp A B
foralltpIntroOf A M
G |- of (foralltp (fn . A)) M
>>
G, type |- of A M[^1]
foralltpIntroEq A M N
G |- eq (foralltp (fn . A)) M N
>>
G, type |- eq A M[^1] N[^1]
foralltpIntro A
G |- foralltp (fn . A) ext M[() . id]
>>
G, (hidden) type |- A ext M
foralltpElimOf A B M
G |- of A[B . id] M
>>
G, type |- istp A
G |- of (foralltp (fn . A)) M
G |- istp B
foralltpElimEq A B M N
G |- eq A[B . id] M N
>>
G, type |- istp A
G |- eq (foralltp (fn . A)) M N
G |- istp B
foralltpElim A B
G |- A[B . id] ext M
>>
G, type |- istp A
G |- foralltp (fn . A) ext M
G |- istp B
iexistsForm A I K
G |- istp (iexists I K (fn . A))
>>
G |- of (kind I) K
G, K |- istp A
iexistsEq A B I K L
G |- eqtp (iexists I K (fn . A)) (iexists I L (fn . B))
>>
G |- eq (kind I) K L
G, K |- eqtp A B
iexistsFormUniv A I J K
G |- of (univ J) (iexists I K (fn . A))
>>
G |- of (kind I) K
G |- lleq I J
G, K |- of (univ J[^1]) A
iexistsEqUniv A B I J K L
G |- eq (univ J) (iexists I K (fn . A)) (iexists I L (fn . B))
>>
G |- eq (kind I) K L
G |- lleq I J
G, K |- eq (univ J[^1]) A B
iexistsIntroOf A B I K M
G |- of (iexists I K (fn . A)) M
>>
G |- of (kind I) K
G, K |- istp A
G |- of K B
G |- of A[B . id] M
iexistsIntroEq A B I K M N
G |- eq (iexists I K (fn . A)) M N
>>
G |- of (kind I) K
G, K |- istp A
G |- of K B
G |- eq A[B . id] M N
iexistsIntro A B I K
G |- iexists I K (fn . A) ext M
>>
G |- of (kind I) K
G, K |- istp A
G |- of K B
G |- A[B . id] ext M
iexistsElimOf A B I K M P
G |- of B P[M . id]
>>
G |- istp K
G, K |- istp A
G, K, A |- of B[^2] P[0 . ^2]
G |- of (iexists I K (fn . A)) M
iexistsElimEq A B I K M N P Q
G |- eq B P[M . id] Q[N . id]
>>
G |- istp K
G, K |- istp A
G, K, A |- eq B[^2] P[0 . ^2] Q[0 . ^2]
G |- eq (iexists I K (fn . A)) M N
iexistsElim A B I K M
G |- B ext P[M . () . id]
>>
G |- istp K
G, K |- istp A
G, (hidden) K, A |- B[^2] ext P
G |- of (iexists I K (fn . A)) M
iexistsElimOfDep A B I K M P
G |- of B[M . id] P[M . id]
>>
G |- istp K
G, K |- istp A
G, K, A |- of B[0 . ^2] P[0 . ^2]
G |- of (iexists I K (fn . A)) M
iexistsElimEqDep A B I K M N P Q
G |- eq B[M . id] P[M . id] Q[N . id]
>>
G |- istp K
G, K |- istp A
G, K, A |- eq B[0 . ^2] P[0 . ^2] Q[0 . ^2]
G |- eq (iexists I K (fn . A)) M N
iexistsElimDep A B I K M
G |- B[M . id] ext P[M . () . id]
>>
G |- istp K
G, K |- istp A
G, (hidden) K, A |- B[0 . ^2] ext P
G |- of (iexists I K (fn . A)) M
iexistsElimIstype A B I K M
G |- istp B[M . id]
>>
G |- istp K
G, K |- istp A
G, K, A |- istp B[0 . ^2]
G |- of (iexists I K (fn . A)) M
iexistsElimEqtype A B C I K M N
G |- eqtp B[M . id] C[N . id]
>>
G |- istp K
G, K |- istp A
G, K, A |- eqtp B[0 . ^2] C[0 . ^2]
G |- eq (iexists I K (fn . A)) M N
substitution n A B M
G1, A, G2 |- B ext N[under_n (^1)]
>>
G1, A, G2 |- istp B
G1, A, G2 |- eq A[(^1) o ^n] 0+n M[(^1) o ^n]
G1, G2[M . id] |- B[under_n (M . id)] ext N
substitutionSimple n A B M
G1, A, G2 |- B[under_n (^1)] ext N[under_n (^1)]
>>
G1, A, G2 |- eq A[(^1) o ^n] 0+n M[(^1) o ^n]
G1, G2[M . id] |- B ext N
generalize A B M
G |- B[M . id] ext N[M . id]
>>
G |- of A M
G, A |- B ext N
assert A B
G |- B ext let M (fn . N)
>>
G |- A ext M
G, A |- B[^1] ext N
assert' A B
G |- B ext N[M . id]
>>
G |- A ext M
G, A |- B[^1] ext N
inhabitant A M
G |- A ext M
>>
G |- of A M
letForm A B M N
G |- of B (let M (fn . N))
>>
G |- of A M
G, A |- of B[^1] N
lethForm A B M N
G |- of B (leth M (fn . N))
>>
G |- of A M
G, A |- of B[^1] N
leteForm A B M N
G |- of B (lete M (fn . N))
>>
G |- of A M
G, A |- of B[^1] N
eeqtpSymm A B
G |- eeqtp A B ext (() , ())
>>
G |- eeqtp B A
weakenEqtpEeqtp A B
G |- eeqtp A B ext (() , ())
>>
G |- eqtp A B
accInd A B I M N R
G |- B[M . id] ext fix (fn . fn . P[fn . fn . 3 1 . 0 . ^2]) M
>>
G |- of (univ I) A
G |- of (arrow A (arrow A (univ I))) R
G, A, (forall A[^1] (fn . arrow (R[^2] 0 1) B[0 . ^2])) |- B[^1] ext P
G |- of A M
G |- of (acc A R M) N
insert n
G1, G2 |- C ext M[under_n (() . id)]
>>
G1, unit, G2[^] |- C[under_n (^1)] ext M
forallLeft M
G, (forall A (fn . B)) |- C[^] ext N[0 M[^] . ^]
>>
G |- of A M
G, B[M . id] |- C[^] ext N
arrowLeft
G, arrow A B |- C[^] ext N[0 M[^] . ^]
>>
G |- A ext M
G, B |- C[^] ext N
sequalForm M
G |- istp (sequal M M)
sequalIntroOf M
G |- of (sequal M M) ()
sequalIntro M
G |- sequal M M
sequalTrivialize M N
G |- sequal M N
>>
G |- sequal M N
sequalExt M N P Q
G |- eq (sequal M N) P Q
>>
G |- of (sequal M N) P
G |- of (sequal M N) Q
sequalLeft n C M N
G1, (sequal M N), G2 |- C ext P[under_n (^1)]
>>
G1, G2[() . id] |- C[under_n (() . id)] ext P
sequalEq A M N
G |- eq A M N
>>
G |- sequal M N
G |- of A M
sequalEqtp A B
G |- eqtp A B
>>
G |- sequal A B
G |- istp A
sequivalence A B
G |- B ext M
>>
G |- sequal A B
G |- A ext M
sequivalenceLeft n A B C
G1, A, G2 |- C ext M
>>
G1, A, G2 |- sequal A[(^1) o ^n] B[(^1) o ^n]
G1, B, G2 |- C ext M
substitutionSyntactic n A B M
G1, A, G2 |- B ext N[under_n (^1)]
>>
G1, A, G2 |- sequal 0+n M[(^1) o ^n]
G1, G2[M . id] |- B[under_n (M . id)] ext N
sequalSymm M N
G |- sequal N M
>>
G |- sequal M N
sequalTrans M N P
G |- sequal M P
>>
G |- sequal M N
G |- sequal N P
sequalCompat M N P
G |- sequal P[M . id] P[N . id]
>>
G |- sequal M N
forallEtaSequal A B M
G |- sequal M (fn . M[^1] 0)
>>
G |- of (forall A (fn . B)) M
arrowEtaSequal A B M
G |- sequal M (fn . M[^1] 0)
>>
G |- of (arrow A B) M
existsEtaSequal A B M
G |- sequal M (M #1 , M #2)
>>
G |- of (exists A (fn . B)) M
prodEtaSequal A B M
G |- sequal M (M #1 , M #2)
>>
G |- of (prod A B) M
futureEtaSequal A M
G |- sequal M (next (M #prev))
>>
G |- of (future A) M
partialForm A
G |- istp (partial A)
>>
G |- istp A
partialEq A B
G |- eqtp (partial A) (partial B)
>>
G |- eqtp A B
partialFormUniv A I
G |- of (univ I) (partial A)
>>
G |- of (univ I) A
partialEqUniv A B I
G |- eq (univ I) (partial A) (partial B)
>>
G |- eq (univ I) A B
partialSub A B
G |- subtype (partial A) (partial B)
>>
G |- subtype A B
partialStrict A
G |- subtype (partial A) (partial (partial A))
>>
G |- istp A
partialStrictConverse A
G |- subtype (partial (partial A)) (partial A)
>>
G |- istp A
partialIdem A
G |- eeqtp (partial (partial A)) (partial A) ext (() , ())
>>
G |- istp A
haltsForm A M
G |- istp (halts M)
>>
G |- of (partial A) M
haltsEq A M N
G |- eqtp (halts M) (halts N)
>>
G |- eq (partial A) M N
haltsFormUniv A I M
G |- of (univ I) (halts M)
>>
G |- of level I
G |- of (partial A) M
haltsEqUniv A I M N
G |- eq (univ I) (halts M) (halts N)
>>
G |- of level I
G |- eq (partial A) M N
partialIntroBottomOf A
G |- of (partial A) bottom
>>
G |- istp A
bottomDiverges
G |- void
>>
G |- halts bottom
partialExt A M N
G |- eq (partial A) M N
>>
G |- istp A
G |- iff (halts M) (halts N)
G, (halts M) |- eq A[^1] M[^1] N[^1]
partialElimEq A M N
G |- eq A M N
>>
G |- eq (partial A) M N
G |- halts M
partialElimOf A M
G |- of A M
>>
G |- of (partial A) M
G |- halts M
haltsTrivialize M
G |- halts M
>>
G |- halts M
haltsExt M N P
G |- eq (halts M) N P
>>
G |- of (halts M) N
G |- of (halts M) P
haltsLeft n C M
G1, (halts M), G2 |- C ext N[under_n (^1)]
>>
G1, G2[() . id] |- C[under_n (() . id)] ext N
haltsValue
G |- halts M
>>
(where M is valuable)
fixpointInductionEq A M N
G |- eq (partial A) (fix M) (fix N)
>>
G |- eq (arrow (partial A) (partial A)) M N
G |- admiss A
fixpointInductionOf A M
G |- of (partial A) (fix M)
>>
G |- of (arrow (partial A) (partial A)) M
G |- admiss A
partialFormInv A
G |- istp A
>>
G |- istp (partial A)
seqBind A B M M' N N'
G |- eq (partial B) (seq M (fn . N)) (seq M' (fn . N'))
>>
G |- eq (partial A) M M'
G, A |- eq (partial B[^1]) N N'
G |- istp B
activeApp A B M N
G |- of (partial B) (M N)
>>
G |- of (partial A) M
G, A |- of (partial B[^1]) (0 N[^1])
G |- istp B
activeAppSeq A B M N
G |- eq (partial B) (M N) (seq M (fn . 0 N[^1]))
>>
G |- of (partial A) M
G, A |- of (partial B[^1]) (0 N[^1])
G |- istp B
appHaltsInv M N
G |- halts M
>>
G |- halts (M N)
activePi1 A B M
G |- of (partial B) (M #1)
>>
G |- of (partial A) M
G, A |- of (partial B[^1]) (0 #1)
G |- istp B
activePi1Seq A B M
G |- eq (partial B) (M #1) (seq M (fn . 0 #1))
>>
G |- of (partial A) M
G, A |- of (partial B[^1]) (0 #1)
G |- istp B
pi1HaltsInv M
G |- halts M
>>
G |- halts (M #1)
activePi2 A B M
G |- of (partial B) (M #2)
>>
G |- of (partial A) M
G, A |- of (partial B[^1]) (0 #2)
G |- istp B
activePi2Seq A B M
G |- eq (partial B) (M #2) (seq M (fn . 0 #2))
>>
G |- of (partial A) M
G, A |- of (partial B[^1]) (0 #2)
G |- istp B
pi2HaltsInv M
G |- halts M
>>
G |- halts (M #2)
prevHaltsInv M
G |- halts M
>>
G |- halts (M #prev)
activeCase A B M P R
G |- of (partial B) (sum_case M (fn . P) (fn . R))
>>
G |- of (partial A) M
G, A |- of (partial B[^1]) (sum_case 0 (fn . P[0 . ^2]) (fn . R[0 . ^2]))
G |- istp B
activeCaseSeq A B M P R
G |- eq (partial B) (sum_case M (fn . P) (fn . R)) (seq M (fn . sum_case 0 (fn . P[0 . ^2]) (fn . R[0 . ^2])))
>>
G |- of (partial A) M
G, A |- of (partial B[^1]) (sum_case 0 (fn . P[0 . ^2]) (fn . R[0 . ^2]))
G |- istp B
caseHaltsInv M P R
G |- halts M
>>
G |- halts (sum_case M (fn . P) (fn . R))
seqHaltsSequal M N
G |- sequal (seq M (fn . N)) N[M . id]
>>
G |- halts M
seqHaltsInv M N
G |- halts M
>>
G |- halts (seq M N)
sequalUnderSeq M M' N
G |- sequal (seq M (fn . N)) N[M' . id]
>>
G |- seq M (fn . sequal 0 M'[^1])
totalStrict A
G |- subtype A (partial A)
>>
G |- istp A
G, A |- halts 0
voidTotal'
G |- total void ext fn . ()
voidStrict
G |- subtype void (partial void)
unitTotal M
G |- halts M
>>
G |- of unit M
unitTotal'
G |- total unit ext fn . ()
unitStrict
G |- subtype unit (partial unit)
boolTotal M
G |- halts M
>>
G |- of bool M
boolTotal'
G |- total bool ext fn . ()
boolStrict
G |- subtype bool (partial bool)
forallTotal A B M
G |- halts M
>>
G |- of (forall A (fn . B)) M
forallTotal' A B
G |- total (forall A (fn . B)) ext fn . ()
>>
G |- istp A
G, A |- istp B
forallStrict A B
G |- subtype (forall A (fn . B)) (partial (forall A (fn . B)))
>>
G |- istp A
G, A |- istp B
arrowTotal A B M
G |- halts M
>>
G |- of (arrow A B) M
arrowTotal' A B
G |- total (arrow A B) ext fn . ()
>>
G |- istp A
G, A |- istp B[^1]
arrowStrict A B
G |- subtype (arrow A B) (partial (arrow A B))
>>
G |- istp A
G |- istp B
intersectStrict A B
G |- subtype (intersect A (fn . B)) (partial (intersect A (fn . B)))
>>
G |- A
G, A |- subtype B (partial B)
existsTotal A B M
G |- halts M
>>
G |- of (exists A (fn . B)) M
existsTotal' A B
G |- total (exists A (fn . B)) ext fn . ()
>>
G |- istp A
G, A |- istp B
existsStrict A B
G |- subtype (exists A (fn . B)) (partial (exists A (fn . B)))
>>
G |- istp A
G, A |- istp B
prodTotal A B M
G |- halts M
>>
G |- of (prod A B) M
prodTotal' A B
G |- total (prod A B) ext fn . ()
>>
G |- istp A
G |- istp B
prodStrict A B
G |- subtype (prod A B) (partial (prod A B))
>>
G |- istp A
G |- istp B
dprodTotal A B M
G |- halts M
>>
G |- of (dprod A B) M
dprodTotal' A B
G |- total (dprod A B) ext (() , fn . ())
>>
G |- istp A
G |- istp B
dprodStrict A B
G |- subtype (dprod A B) (partial (dprod A B))
>>
G |- istp A
G |- istp B
sumTotal A B M
G |- halts M
>>
G |- of (sum A B) M
sumTotal' A B
G |- total (sum A B) ext fn . ()
>>
G |- istp A
G |- istp B
sumStrict A B
G |- subtype (sum A B) (partial (sum A B))
>>
G |- istp A
G |- istp B
futureTotal A M
G |- halts M
>>
G |- of (future A) M
futureTotal' A
G |- total (future A) ext fn . ()
>>
promote(G) |- istp A
futureStrict A
G |- subtype (future A) (partial (future A))
>>
promote(G) |- istp A
setTotal' A B
G |- total (set A (fn . B)) ext (() , fn . ())
>>
G, A |- istp B
G |- total A
setStrict A B
G |- subtype (set A (fn . B)) (partial (set A (fn . B)))
>>
G, A |- istp B
G |- subtype A (partial A)
isetTotal' A B
G |- total (iset A (fn . B)) ext (() , fn . ())
>>
G, A |- istp B
G |- total A
isetStrict A B
G |- subtype (iset A (fn . B)) (partial (iset A (fn . B)))
>>
G, A |- istp B
G |- subtype A (partial A)
quotientTotal' A B
G |- total (quotient A (fn . fn . B)) ext (() , fn . ())
>>
G |- istp (quotient A (fn . fn . B))
G, A, A[^1] |- istp B
G |- total A
natTotal M
G |- halts M
>>
G |- of nat M
natTotal'
G |- total nat ext fn . ()
natStrict
G |- subtype nat (partial nat)
typeHalts A
G |- halts A
>>
G |- istp A
reduceSeqTotal A M N
G |- sequal (seq M (fn . N)) N[M . id]
>>
G |- of A M
G |- total A
haltsTotal A M
G |- halts M
>>
G |- of A M
G |- total A
uptypeForm A
G |- istp (uptype A)
>>
G |- istp A
uptypeEq A B
G |- eqtp (uptype A) (uptype B)
>>
G |- eqtp A B
uptypeFormUniv A I
G |- of (univ I) (uptype A)
>>
G |- of (univ I) A
uptypeEqUniv A B I
G |- eq (univ I) (uptype A) (uptype B)
>>
G |- eq (univ I) A B
uptypeTrivialize A
G |- uptype A
>>
G |- uptype A
uptypeExt A M N
G |- eq (uptype A) M N
>>
G |- of (uptype A) M
G |- of (uptype A) N
uptypeLeft n A B
G1, (uptype A), G2 |- B ext M[under_n (^1)]
>>
G1, G2[() . id] |- B[under_n (() . id)] ext M
uptypeEeqtp A B
G |- uptype B
>>
G |- uptype A
G |- eeqtp A B
uptypeUnitary A
G |- uptype A
>>
G |- subtype A unit
voidUptype
G |- uptype void
unitUptype
G |- uptype unit
boolUptype
G |- uptype bool
forallUptype A B
G |- uptype (forall A (fn . B))
>>
G |- istp A
G, A |- uptype B
arrowUptype A B
G |- uptype (arrow A B)
>>
G |- istp A
G |- uptype B
intersectUptype A B
G |- uptype (intersect A (fn . B))
>>
G |- istp A
G, A |- uptype B
existsUptype A B
G |- uptype (exists A (fn . B))
>>
G |- uptype A
G, A |- uptype B
prodUptype A B
G |- uptype (prod A B)
>>
G |- uptype A
G |- uptype B
dprodUptype A B
G |- uptype (dprod A B)
>>
G |- uptype A
G, A |- uptype B[^1]
sumUptype A B
G |- uptype (sum A B)
>>
G |- uptype A
G |- uptype B
futureUptype A
G |- uptype (future A)
>>
promote(G) |- uptype A
eqUptype A M N
G |- uptype (eq A M N)
>>
G |- of A M
G |- of A N
ofUptype A M
G |- uptype (of A M)
>>
G |- of A M
eqtpUptype A B
G |- uptype (eqtp A B)
>>
G |- istp A
G |- istp B
istpUptype A
G |- uptype (istp A)
>>
G |- istp A
subtypeUptype A B
G |- uptype (subtype A B)
>>
G |- istp A
G |- istp B
setUptype A B
G |- uptype (set A (fn . B))
>>
G |- uptype A
G, A |- istp B
isetUptype A B
G |- uptype (iset A (fn . B))
>>
G |- uptype A
G, A |- istp B
muUptype A
G |- uptype (mu (fn . A))
>>
G, type |- istp A
G, type, (uptype 0) |- uptype A[^1]
G |- positive (fn . A)
muUptypeUniv A I
G |- uptype (mu (fn . A))
>>
G |- of level I
G, (univ I) |- of (univ I[^1]) A
G, (univ I), (uptype 0) |- uptype A[^1]
G |- positive (fn . A)
recUptype A
G |- uptype (rec (fn . A))
>>
G, (later) type |- istp A
G, (later) type, (later) (uptype 0) |- uptype A[^1]
recUptypeUniv A I
G |- uptype (rec (fn . A))
>>
G |- of level I
G, (later) (univ I) |- of (univ I[^1]) A
G, (later) (univ I), (later) (uptype 0) |- uptype A[^1]
natUptype
G |- uptype nat
uptypeFormInv A
G |- istp A
>>
G |- istp (uptype A)
admissForm A
G |- istp (admiss A)
>>
G |- istp A
admissEq A B
G |- eqtp (admiss A) (admiss B)
>>
G |- eqtp A B
admissFormUniv A I
G |- of (univ I) (admiss A)
>>
G |- of (univ I) A
admissEqUniv A B I
G |- eq (univ I) (admiss A) (admiss B)
>>
G |- eq (univ I) A B
admissTrivialize A
G |- admiss A
>>
G |- admiss A
admissExt A M N
G |- eq (admiss A) M N
>>
G |- of (admiss A) M
G |- of (admiss A) N
admissLeft n A B
G1, (admiss A), G2 |- B ext M[under_n (^1)]
>>
G1, G2[() . id] |- B[under_n (() . id)] ext M
admissEeqtp A B
G |- admiss B
>>
G |- admiss A
G |- eeqtp A B
uptypeAdmiss A
G |- admiss A
>>
G |- uptype A
partialAdmiss A
G |- admiss (partial A)
>>
G |- admiss A
voidAdmiss
G |- admiss void
unitAdmiss
G |- admiss unit
boolAdmiss
G |- admiss bool
forallAdmiss A B
G |- admiss (forall A (fn . B))
>>
G |- istp A
G, A |- admiss B
arrowAdmiss A B
G |- admiss (arrow A B)
>>
G |- istp A
G |- admiss B
intersectAdmiss A B
G |- admiss (intersect A (fn . B))
>>
G |- istp A
G, A |- admiss B
existsAdmissUptype A B
G |- admiss (exists A (fn . B))
>>
G |- uptype A
G, A |- admiss B
prodAdmiss A B
G |- admiss (prod A B)
>>
G |- admiss A
G |- admiss B
dprodAdmissUptype A B
G |- admiss (dprod A B)
>>
G |- uptype A
G, A |- admiss B[^1]
sumAdmiss A B
G |- admiss (sum A B)
>>
G |- admiss A
G |- admiss B
futureAdmiss A
G |- admiss (future A)
>>
promote(G) |- admiss A
eqAdmiss A M N
G |- admiss (eq A M N)
>>
G |- of A M
G |- of A N
ofAdmiss A M
G |- admiss (of A M)
>>
G |- of A M
eqtpAdmiss A B
G |- admiss (eqtp A B)
>>
G |- istp A
G |- istp B
istpAdmiss A
G |- admiss (istp A)
>>
G |- istp A
subtypeAdmiss A B
G |- admiss (subtype A B)
>>
G |- istp A
G |- istp B
recAdmiss A
G |- admiss (rec (fn . A))
>>
G, (later) type |- istp A
G, (later) type, (later) (admiss 0) |- admiss A[^1]
recAdmissUniv A I
G |- admiss (rec (fn . A))
>>
G |- of level I
G, (later) (univ I) |- of (univ I[^1]) A
G, (later) (univ I), (later) (admiss 0) |- admiss A[^1]
natAdmiss
G |- admiss nat
admissFormInv A
G |- istp A
>>
G |- istp (admiss A)
partialType
G |- of (intersect level (fn . arrow (univ 0) (univ 0))) partial
haltsType
G |- of (intersect level (fn . intersect (univ 0) (fn . arrow (partial 0) (univ lzero)))) halts
admissType
G |- of (intersect level (fn . arrow (univ 0) (univ 0))) admiss
uptypeType
G |- of (intersect level (fn . arrow (univ 0) (univ 0))) uptype
seqType
G |- of (intersect level (fn . intersect (univ 0) (fn . intersect (univ 1) (fn . arrow (partial 1) (arrow (arrow 1 (partial 0)) (partial 0)))))) seq
letIntro n M
G1, G2 |- C ext N[under_n (M . id)]
>>
G1, = M, G2[^] |- C[under_n (^1)] ext N
letSubst n
G1, = M, G2 |- C ext N[under_n (^1)]
>>
G1, G2[M . id] |- C[under_n (M . id)] ext N
letFold n C
G1, = M, G2 |- C[M[^n+1] . id] ext N
>>
G1, = M, G2 |- C[n . id] ext N
letUnfold n C
G1, = M, G2 |- C[n . id] ext N
>>
G1, = M, G2 |- C[M[^n+1] . id] ext N
letFoldHyp (m+n+1) m H
G1, = M, G2, H[M[^n+1] . id], G3 |- C ext N
>>
G1, = M, G2, H[n . id], G3 |- C ext N
(where m = length(G3) and n = length(G2))
letUnfoldHyp (m+n+1) m H
G1, = M, G2, H[n . id], G3 |- C ext N
>>
G1, = M, G2, H[M[^n+1] . id], G3 |- C ext N
(where m = length(G3) and n = length(G2))
integerForm
G |- istp integer
integerEq
G |- eqtp integer integer
integerFormUniv I
G |- of (univ I) integer
>>
G |- of level I
integerEqUniv I
G |- eq (univ I) integer integer
>>
G |- of level I
integerIntroOf
G |- of integer M
(where M is an integer literal)
integerIntroEq
G |- eq integer M M
(where M is an integer literal)
integerToDefType
G |- of (arrow integer Integer) integer_to_def
integerFromDefType
G |- of (arrow Integer integer) integer_from_def
integerIsomorphism1
G |- eq (arrow integer integer) (fn . integer_from_Integer (integer_to_Integer 0)) (fn . 0)
integerIsomorphism2
G |- eq (arrow Integer Integer) (fn . integer_to_Integer (integer_from_Integer 0)) (fn . 0)
pluszSpec
G |- eq
(arrow integer (arrow integer integer))
plusz
(fn . fn . integer_from_Integer (Plusz (integer_to_Integer 1) (integer_to_Integer 0)))
negzSpec
G |- eq
(arrow integer integer)
negz
(fn . integer_from_Integer (Negz (integer_to_Integer 0)))
eqzbSpec
G |- eq
(arrow integer (arrow integer bool))
eqzb
(fn . fn . Eqzb (integer_to_Integer 1) (integer_to_Integer 0))
leqzbSpec
G |- eq
(arrow integer (arrow integer bool))
leqzb
(fn . fn . Leqzb (integer_to_Integer 1) (integer_to_Integer 0))
timeszSpec
G |- eq
(arrow integer (arrow integer integer))
timesz
(fn . fn . integer_from_Integer (Timesz (integer_to_Integer 1) (integer_to_Integer 0)))
integerTotal M
G |- halts M
>>
G |- of integer M
integerStrict
G |- subtype integer (partial integer)
integerUptype
G |- uptype integer
integerAdmiss
G |- admiss integer
integerSequal M N
G |- sequal M N
>>
G |- eq integer M N
symbolForm
G |- istp symbol
symbolEq
G |- eqtp symbol symbol
symbolFormUniv I
G |- of (univ I) symbol
>>
G |- of level I
symbolEqUniv I
G |- eq (univ I) symbol symbol
>>
G |- of level I
symbolIntroOf
G |- of symbol M
(where M is an symbol literal)
symbolIntroEq
G |- eq symbol M M
(where M is an symbol literal)
symbol_eqbType
G |- of (arrow symbol (arrow symbol bool)) symbol_eqb
symbol_eqbSpec1 M N
G |- eq bool (symbol_eqb M N) true
>>
G |- eq symbol M N
symbol_eqbSpec2 M N
G |- eq symbol M N
>>
G |- eq bool (symbol_eqb M N) true
symbolTotal M
G |- halts M
>>
G |- of symbol M
symbolStrict
G |- subtype symbol (partial symbol)
symbolUptype
G |- uptype symbol
symbolAdmiss
G |- admiss symbol
symbolSequal M N
G |- sequal M N
>>
G |- eq symbol M N
This rules are tailor-made to justify certain transformations in the rewriter, to improve performance and robustness. (Some of the justifying derivations are quite large.)
eeqtpRefl A
G |- eeqtp A A ext (() , ())
>>
G |- istp A
eeqtpSymm A B
G |- eeqtp A B ext (() , ())
>>
G |- eeqtp B A
eeqtpTrans A B C
G |- eeqtp A C ext (() , ())
>>
G |- eeqtp A B
G |- eeqtp B C
weakenEqtpEeqtp A B
G |- eeqtp A B ext (() , ())
>>
G |- eqtp A B
weakenSubtypeArrow A B
G |- arrow A B ext fn . 0
>>
G |- subtype A B
weakenEeqtpIff A B
G |- iff A B ext (fn . 0 , fn . 0)
>>
G |- eeqtp A B
compatGuardEqtp1 A B B'
G |- eqtp (guard A B) (guard A B')
>>
G |- istp A
G |- eqtp B B'
compatSetEqtp0 A A' B
G |- eqtp (set A (fn . B)) (set A' (fn . B))
>>
G |- eqtp A A'
G, A |- istp B
forallEeq A A' B B'
G |- eeqtp (forall A (fn . B)) (forall A' (fn . B')) ext (() , ())
>>
G |- eeqtp A A'
G, A |- eeqtp B B'
existsEeq A A' B B'
G |- eeqtp (exists A (fn . B)) (exists A' (fn . B')) ext (() , ())
>>
G |- eeqtp A A'
G, A |- eeqtp B B'
arrowEeq A A' B B'
G |- eeqtp (arrow A B) (arrow A' B') ext (() , ())
>>
G |- eeqtp A A'
G |- eeqtp B B'
prodEeq A A' B B'
G |- eeqtp (prod A B) (prod A' B') ext (() , ())
>>
G |- eeqtp A A'
G |- eeqtp B B'
dprodEeq A A' B B'
G |- eeqtp (dprod A B) (dprod A' B') ext (() , ())
>>
G |- eeqtp A A'
G, A |- eeqtp B[^1] B'[^1]
sumEeq A A' B B'
G |- eeqtp (sum A B) (sum A' B') ext (() , ())
>>
G |- eeqtp A A'
G |- eeqtp B B'
futureEeq A A'
G |- eeqtp (future A) (future A') ext (() , ())
>>
promote(G) |- eeqtp A A'
intersectEeq A A' B B'
G |- eeqtp (intersect A (fn . B)) (intersect A' (fn . B')) ext (() , ())
>>
G |- eeqtp A A'
G, A |- eeqtp B B'
unionEeq A A' B B'
G |- eeqtp (union A (fn . B)) (union A' (fn . B')) ext (() , ())
>>
G |- eeqtp A A'
G, A |- eeqtp B B'
compatGuardEeq1 A B B'
G |- eeqtp (guard A B) (guard A B') ext (() , ())
>>
G |- istp A
G |- eeqtp B B'
compatSetEeq0 A A' B
G |- eeqtp (set A (fn . B)) (set A' (fn . B)) ext (() , ())
>>
G |- eeqtp A A'
G, A |- istp B
compatIsetEeq0 A A' B
G |- eeqtp (iset A (fn . B)) (iset A' (fn . B)) ext (() , ())
>>
G |- eeqtp A A'
G, A |- istp B
compatIsetIff1 A B B'
G |- eeqtp (iset A (fn . B)) (iset A (fn . B')) ext (() , ())
>>
G |- istp A
G, A |- iff B B'
compatForallSubtype0 A A' B
G |- subtype (forall A (fn . B)) (forall A' (fn . B))
>>
G |- subtype A' A
G, A |- istp B
compatForallSubtype1 A B B'
G |- subtype (forall A (fn . B)) (forall A (fn . B'))
>>
G |- istp A
G, A |- subtype B B'
compatExistsSubtype0 A A' B
G |- subtype (exists A (fn . B)) (exists A' (fn . B))
>>
G |- subtype A A'
G, A' |- istp B
compatExistsSubtype1 A B B'
G |- subtype (exists A (fn . B)) (exists A (fn . B'))
>>
G |- istp A
G, A |- subtype B B'
compatIntersectSubtype0 A A' B
G |- subtype (intersect A (fn . B)) (intersect A' (fn . B))
>>
G |- subtype A' A
G, A |- istp B
compatIntersectSubtype1 A B B'
G |- subtype (intersect A (fn . B)) (intersect A (fn . B'))
>>
G |- istp A
G, A |- subtype B B'
compatUnionSubtype0 A A' B
G |- subtype (union A (fn . B)) (union A' (fn . B))
>>
G |- subtype A A'
G, A' |- istp B
compatUnionSubtype1 A B B'
G |- subtype (union A (fn . B)) (union A (fn . B'))
>>
G |- istp A
G, A |- subtype B B'
compatGuardArrow0 A A' B
G |- subtype (guard A B) (guard A' B)
>>
G |- istp A
G |- istp B
G |- arrow A' A
compatGuardSubtype1 A B B'
G |- subtype (guard A B) (guard A B')
>>
G |- istp A
G |- subtype B B'
compatSetSubtype0 A A' B
G |- subtype (set A (fn . B)) (set A' (fn . B))
>>
G |- subtype A A'
G, A' |- istp B
compatSetArrow1 A B B'
G |- subtype (set A (fn . B)) (set A (fn . B'))
>>
G |- istp A
G, A |- istp B'
G, A |- arrow B B'
compatIsetSubtype0 A A' B
G |- subtype (iset A (fn . B)) (iset A' (fn . B))
>>
G |- subtype A A'
G, A' |- istp B
compatIsetArrow1 A B B'
G |- subtype (iset A (fn . B)) (iset A (fn . B'))
>>
G |- istp A
G, A |- istp B'
G, A |- arrow B B'
compatForallIff1 A B B'
G |- iff (forall A (fn . B)) (forall A (fn . B')) ext (fn . fn . M[0 . ^2] #1 (1 0) , fn . fn . M[0 . ^2] #2 (1 0))
>>
G |- istp A
G, A |- iff B B' ext M
compatExistsIff1 A B B'
G |- iff (exists A (fn . B)) (exists A (fn . B')) ext (fn . (0 #1 , M[0 #1 . ^1] #1 (0 #2)) , fn . (0 #1 , M[0 #1 . ^1] #2 (0 #2)))
>>
G |- istp A
G, A |- iff B B' ext M
compatArrowIff0 A A' B
G |- iff (arrow A B) (arrow A' B) ext (fn . fn . 1 (M[^2] #2 0) , fn . fn . 1 (M[^2] #1 0))
>>
G |- istp B
G |- iff A A' ext M
compatArrowIff1 A B B'
G |- iff (arrow A B) (arrow A B') ext (fn . fn . M[^2] #1 (1 0) , fn . fn . M[^2] #2 (1 0))
>>
G |- istp A
G |- iff B B' ext M
compatProdIff0 A A' B
G |- iff (prod A B) (prod A' B) ext (fn . (M[^1] #1 (0 #1) , 0 #2) , fn . (M[^1] #2 (0 #1) , 0 #2))
>>
G |- istp B
G |- iff A A' ext M
compatProdIff1 A B B'
G |- iff (prod A B) (prod A B') ext (fn . (0 #1 , M[^1] #1 (0 #2)) , fn . (0 #1 , M[^1] #2 (0 #2)))
>>
G |- istp A
G |- iff B B' ext M
compatDprodIff0 A A' B
G |- iff (dprod A B) (dprod A' B) ext (fn . (M[^1] #1 (0 #1) , 0 #2) , fn . (M[^1] #2 (0 #1) , 0 #2))
>>
G, A |- istp B[^1]
G |- iff A A' ext M
compatDprodIff1 A B B'
G |- iff (dprod A B) (dprod A B') ext (fn . (0 #1 , M[^1] #1 (0 #2)) , fn . (0 #1 , M[^1] #2 (0 #2)))
>>
G |- istp A
G |- iff B B' ext M
compatSumIff0 A A' B
G |- iff (sum A B) (sum A' B) ext (fn . sum_case 0 (fn . inl (M[^2] #1 0)) (fn . inr 0) , fn . sum_case 0 (fn . inl (M[^2] #2 0)) (fn . inr 0))
>>
G |- istp B
G |- iff A A' ext M
compatSumIff1 A B B'
G |- iff (sum A B) (sum A B') ext (fn . sum_case 0 (fn . inl 0) (fn . inr (M[^2] #1 0)) , fn . sum_case 0 (fn . inl 0) (fn . inr (M[^2] #2 0)))
>>
G |- istp A
G |- iff B B' ext M
compatFutureIff A A'
G |- iff (future A) (future A') ext (fn . letnext 0 (fn . next (M[^2] #1 0)) , fn . letnext 0 (fn . next (M[^2] #2 0)))
>>
promote(G) |- iff A A' ext M
compatForallArrow1 A B B'
G |- arrow (forall A (fn . B)) (forall A (fn . B')) ext fn . fn . M[0 . ^2] (1 0)
>>
G |- istp A
G, A |- arrow B B' ext M
compatExistsArrow1 A B B'
G |- arrow (exists A (fn . B)) (exists A (fn . B')) ext fn . (0 #1 , M[0 #1 . ^1] (0 #2))
>>
G |- istp A
G, A |- istp B'
G, A |- arrow B B' ext M
compatArrowArrow0 A A' B
G |- arrow (arrow A B) (arrow A' B) ext fn . fn . 1 (M[^2] 0)
>>
G |- istp A
G |- istp B
G |- arrow A' A ext M
compatArrowArrow1 A B B'
G |- arrow (arrow A B) (arrow A B') ext fn . fn . M[^2] (1 0)
>>
G |- istp A
G |- arrow B B' ext M
compatProdArrow0 A A' B
G |- arrow (prod A B) (prod A' B) ext fn . (M[^1] (0 #1) , 0 #2)
>>
G |- istp B
G |- arrow A A' ext M
compatProdArrow1 A B B'
G |- arrow (prod A B) (prod A B') ext fn . (0 #1 , M[^1] (0 #2))
>>
G |- istp A
G |- arrow B B' ext M
compatDprodArrow0 A A' B
G |- arrow (dprod A B) (dprod A' B) ext fn . (M[^1] (0 #1) , 0 #2)
>>
G |- istp B
G |- arrow A A' ext M
compatDprodArrow1 A B B'
G |- arrow (dprod A B) (dprod A B') ext fn . (0 #1 , M[^1] (0 #2))
>>
G |- istp A
G |- arrow B B' ext M
compatSumArrow0 A A' B
G |- arrow (sum A B) (sum A' B) ext fn . sum_case 0 (fn . inl (M[^2] 0)) (fn . inr 0)
>>
G |- istp A'
G |- istp B
G |- arrow A A' ext M
compatSumArrow1 A B B'
G |- arrow (sum A B) (sum A B') ext fn . sum_case 0 (fn . inl 0) (fn . inr (M[^2] 0))
>>
G |- istp A
G |- istp B'
G |- arrow B B' ext M
compatFutureArrow A A'
G |- arrow (future A) (future A') ext fn . letnext 0 (fn . next (M[^2] 0))
>>
promote(G) |- arrow A A' ext M
compatForallEntails1 A B B'
G |- forall A (fn . B') ext fn . M[F[^1] 0 . id]
>>
G, A, B |- B'[^1] ext M
G |- forall A (fn . B) ext F
compatArrowEntails1 A B B'
G |- arrow A B' ext fn . M[F[^1] 0 . ^1]
>>
G, B |- B'[^1] ext M
G |- arrow A B ext F
compatProdEntails0 A A' B
G |- prod A' B ext (M[P #1 . id] , P #2)
>>
G, A |- A'[^1] ext M
G |- prod A B ext P
compatProdEntails1 A B B'
G |- prod A B' ext (P #1 , M[P #2 . id])
>>
G, B |- B'[^1] ext M
G |- prod A B ext P
compatDprodEntails0 A A' B
G |- dprod A' B ext (M[P #1 . id] , P #2)
>>
G, A |- A'[^1] ext M
G |- dprod A B ext P
compatDprodEntails1 A B B'
G |- dprod A B' ext (P #1 , M[P #2 . id])
>>
G, B |- B'[^1] ext M
G |- dprod A B ext P